基于近似动态规划的分散无人机群多目标跟踪控制

Md. Ali Azam, Shawon Dey, H. Mittelmann, Shankarachary Ragi
{"title":"基于近似动态规划的分散无人机群多目标跟踪控制","authors":"Md. Ali Azam, Shawon Dey, H. Mittelmann, Shankarachary Ragi","doi":"10.1109/AIIoT52608.2021.9454229","DOIUrl":null,"url":null,"abstract":"We develop a decentralized control method for a UAV swarm for a multitarget tracking application using the theory of decentralized Markov decision processes (Dec-MDPs). This study develops a UAV control strategy to maximize the overall target tracking performance in a decentralized setting. Motivation for this case study comes from the surveillance applications using UAV swarms. Decision-theoretic approaches are very difficult to solve due to high dimensionality and being computationally expensive. We extend an approximate dynamic programming method called nominal belief-state optimization (NBO) to solve the UAV swarm control problem for target tracking application. We also implement a centralized MDP approach as a benchmark to compare the performance of the Dec-MDP approach.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Decentralized UAV Swarm Control for Multitarget Tracking using Approximate Dynamic Programming\",\"authors\":\"Md. Ali Azam, Shawon Dey, H. Mittelmann, Shankarachary Ragi\",\"doi\":\"10.1109/AIIoT52608.2021.9454229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a decentralized control method for a UAV swarm for a multitarget tracking application using the theory of decentralized Markov decision processes (Dec-MDPs). This study develops a UAV control strategy to maximize the overall target tracking performance in a decentralized setting. Motivation for this case study comes from the surveillance applications using UAV swarms. Decision-theoretic approaches are very difficult to solve due to high dimensionality and being computationally expensive. We extend an approximate dynamic programming method called nominal belief-state optimization (NBO) to solve the UAV swarm control problem for target tracking application. We also implement a centralized MDP approach as a benchmark to compare the performance of the Dec-MDP approach.\",\"PeriodicalId\":443405,\"journal\":{\"name\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIIoT52608.2021.9454229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用分散式马尔可夫决策过程(dec - mdp)理论,提出了一种用于多目标跟踪应用的无人机群分散控制方法。本文研究了一种分散环境下的无人机控制策略,以最大限度地提高总体目标跟踪性能。本案例研究的动机来自使用无人机群的监视应用。决策理论方法由于其高维性和计算成本高而很难求解。我们扩展了一种近似动态规划方法,称为标称信念状态优化(NBO),以解决目标跟踪应用中的无人机群控制问题。我们还实现了一个集中式MDP方法,作为比较Dec-MDP方法性能的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized UAV Swarm Control for Multitarget Tracking using Approximate Dynamic Programming
We develop a decentralized control method for a UAV swarm for a multitarget tracking application using the theory of decentralized Markov decision processes (Dec-MDPs). This study develops a UAV control strategy to maximize the overall target tracking performance in a decentralized setting. Motivation for this case study comes from the surveillance applications using UAV swarms. Decision-theoretic approaches are very difficult to solve due to high dimensionality and being computationally expensive. We extend an approximate dynamic programming method called nominal belief-state optimization (NBO) to solve the UAV swarm control problem for target tracking application. We also implement a centralized MDP approach as a benchmark to compare the performance of the Dec-MDP approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-LPWAN: issues, solutions and research directions Automatic Detection of Vehicle Congestion by Using Roadside Unit Improved Noise Filtering Technique For Wake Detection In SAR Image Under Rough Sea Condition First Enriched Legal Database in Bangladesh with Efficient Search Optimization and Data Visualization for Law Students and Lawyers Differentially-Private Federated Learning with Long-Term Budget Constraints Using Online Lagrangian Descent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1