{"title":"用于云数据库的通用自动供应框架","authors":"Jennie Duggan, Olga Papaemmanouil, U. Çetintemel","doi":"10.1109/ICDEW.2010.5452746","DOIUrl":null,"url":null,"abstract":"We discuss the problem of resource provisioning for database management systems operating on top of an Infrastructure-As-A-Service (IaaS) cloud. To solve this problem, we describe an extensible framework that, given a target query workload, continually optimizes the system's operational cost, estimated based on the IaaS provider's pricing model, while satisfying QoS expectations. Specifically, we describe two different approaches, a “white-box” approach that uses a fine-grained estimation of the expected resource consumption for a workload, and a “black-box” approach that relies on coarse-grained profiling to characterize the workload's end-to-end performance across various cloud resources. We formalize both approaches as a constraint programming problem and use a generic constraint solver to efficiently tackle them. We present preliminary experimental numbers, obtained by running TPC-H queries with PostsgreSQL on Amazon's EC2, that provide evidence of the feasibility and utility of our approaches. We also briefly discuss the pertinent challenges and directions of on-going research.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"777 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"A generic auto-provisioning framework for cloud databases\",\"authors\":\"Jennie Duggan, Olga Papaemmanouil, U. Çetintemel\",\"doi\":\"10.1109/ICDEW.2010.5452746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the problem of resource provisioning for database management systems operating on top of an Infrastructure-As-A-Service (IaaS) cloud. To solve this problem, we describe an extensible framework that, given a target query workload, continually optimizes the system's operational cost, estimated based on the IaaS provider's pricing model, while satisfying QoS expectations. Specifically, we describe two different approaches, a “white-box” approach that uses a fine-grained estimation of the expected resource consumption for a workload, and a “black-box” approach that relies on coarse-grained profiling to characterize the workload's end-to-end performance across various cloud resources. We formalize both approaches as a constraint programming problem and use a generic constraint solver to efficiently tackle them. We present preliminary experimental numbers, obtained by running TPC-H queries with PostsgreSQL on Amazon's EC2, that provide evidence of the feasibility and utility of our approaches. We also briefly discuss the pertinent challenges and directions of on-going research.\",\"PeriodicalId\":442345,\"journal\":{\"name\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"volume\":\"777 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2010.5452746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generic auto-provisioning framework for cloud databases
We discuss the problem of resource provisioning for database management systems operating on top of an Infrastructure-As-A-Service (IaaS) cloud. To solve this problem, we describe an extensible framework that, given a target query workload, continually optimizes the system's operational cost, estimated based on the IaaS provider's pricing model, while satisfying QoS expectations. Specifically, we describe two different approaches, a “white-box” approach that uses a fine-grained estimation of the expected resource consumption for a workload, and a “black-box” approach that relies on coarse-grained profiling to characterize the workload's end-to-end performance across various cloud resources. We formalize both approaches as a constraint programming problem and use a generic constraint solver to efficiently tackle them. We present preliminary experimental numbers, obtained by running TPC-H queries with PostsgreSQL on Amazon's EC2, that provide evidence of the feasibility and utility of our approaches. We also briefly discuss the pertinent challenges and directions of on-going research.