基于强化学习的MIMO隔离微电网虚拟惯性控制

V. Skiparev, J. Belikov, E. Petlenkov, Y. Levron
{"title":"基于强化学习的MIMO隔离微电网虚拟惯性控制","authors":"V. Skiparev, J. Belikov, E. Petlenkov, Y. Levron","doi":"10.1109/ISGT-Europe54678.2022.9960447","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-input multi-output controller for optimal control of nonlinear energy storage, using deep reinforcement learning (DRL) algorithm. This controller provides the frequency support in an isolated microgrid with high penetration of variable renewable energy sources and varying system inertia. To achieve an optimal control we redesigned neural network of actor and critic, simplified deep deterministic policy gradient (DDPG) rules, and reorganized the reward/punishment system. Simulation results show the efficiency of the proposed virtual inertia control architecture in several scenarios.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforcement Learning based MIMO Controller for Virtual Inertia Control in Isolated Microgrids\",\"authors\":\"V. Skiparev, J. Belikov, E. Petlenkov, Y. Levron\",\"doi\":\"10.1109/ISGT-Europe54678.2022.9960447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a multi-input multi-output controller for optimal control of nonlinear energy storage, using deep reinforcement learning (DRL) algorithm. This controller provides the frequency support in an isolated microgrid with high penetration of variable renewable energy sources and varying system inertia. To achieve an optimal control we redesigned neural network of actor and critic, simplified deep deterministic policy gradient (DDPG) rules, and reorganized the reward/punishment system. Simulation results show the efficiency of the proposed virtual inertia control architecture in several scenarios.\",\"PeriodicalId\":311595,\"journal\":{\"name\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"229 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Europe54678.2022.9960447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用深度强化学习(DRL)算法,提出了一种多输入多输出的非线性储能最优控制控制器。该控制器在具有可变可再生能源高渗透和系统惯性变化的孤立微电网中提供频率支持。为了实现最优控制,我们重新设计了演员和评论家的神经网络,简化了深度确定性策略梯度(deep deterministic policy gradient, DDPG)规则,重组了奖惩系统。仿真结果表明了所提出的虚拟惯性控制体系在多种场景下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning based MIMO Controller for Virtual Inertia Control in Isolated Microgrids
In this paper, we propose a multi-input multi-output controller for optimal control of nonlinear energy storage, using deep reinforcement learning (DRL) algorithm. This controller provides the frequency support in an isolated microgrid with high penetration of variable renewable energy sources and varying system inertia. To achieve an optimal control we redesigned neural network of actor and critic, simplified deep deterministic policy gradient (DDPG) rules, and reorganized the reward/punishment system. Simulation results show the efficiency of the proposed virtual inertia control architecture in several scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of HVDC Fault Ride-Through and Continuous Reactive Current Support on Transient Stability in Meshed AC/DC Transmission Grids On the role of demand response and key CCHP technologies for increased integration of variable renewable energy into a microgrid Recuperation of railcar braking energy using energy storage at station level Towards Risk Assessment of Smart Grids with Heterogeneous Assets Application of shunt active power filters in active distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1