动态环境下多车辆自主群体路径规划

Mudassir Jann, S. Anavatti, Sumana Biswas
{"title":"动态环境下多车辆自主群体路径规划","authors":"Mudassir Jann, S. Anavatti, Sumana Biswas","doi":"10.1109/ICACI.2017.7974484","DOIUrl":null,"url":null,"abstract":"This paper aims at investigating the dynamic path planning of a multi-agent autonomous swarm to execute a task of traversing a certain terrain with specified start and goal state. The area under consideration also includes a specified number of secondary goals/checkpoints to be explored/visited by at-least one vehicle of the swarm while avoiding the static and dynamic obstacles. The decision about the traversal to the checkpoints is made by the swarm itself, thus providing a decentralized control. D∗lite is employed for dynamic path planning. Numerical simulation results are presented to validate the path planning algorithm with different number of agents and obstacles.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Path planning for multi-vehicle autonomous swarms in dynamic environment\",\"authors\":\"Mudassir Jann, S. Anavatti, Sumana Biswas\",\"doi\":\"10.1109/ICACI.2017.7974484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at investigating the dynamic path planning of a multi-agent autonomous swarm to execute a task of traversing a certain terrain with specified start and goal state. The area under consideration also includes a specified number of secondary goals/checkpoints to be explored/visited by at-least one vehicle of the swarm while avoiding the static and dynamic obstacles. The decision about the traversal to the checkpoints is made by the swarm itself, thus providing a decentralized control. D∗lite is employed for dynamic path planning. Numerical simulation results are presented to validate the path planning algorithm with different number of agents and obstacles.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了多智能体自治群体在给定起点和目标状态下穿越特定地形的动态路径规划问题。考虑的区域还包括指定数量的次要目标/检查点,至少有一辆车可以在避开静态和动态障碍的同时探索/访问这些目标/检查点。关于穿越检查点的决定是由蜂群自己做出的,因此提供了分散的控制。D * life用于动态路径规划。通过数值仿真验证了不同数量智能体和障碍物的路径规划算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path planning for multi-vehicle autonomous swarms in dynamic environment
This paper aims at investigating the dynamic path planning of a multi-agent autonomous swarm to execute a task of traversing a certain terrain with specified start and goal state. The area under consideration also includes a specified number of secondary goals/checkpoints to be explored/visited by at-least one vehicle of the swarm while avoiding the static and dynamic obstacles. The decision about the traversal to the checkpoints is made by the swarm itself, thus providing a decentralized control. D∗lite is employed for dynamic path planning. Numerical simulation results are presented to validate the path planning algorithm with different number of agents and obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blood vessel segmentation in retinal images using echo state networks Global mean square exponential synchronization of stochastic neural networks with time-varying delays Navigation of mobile robot with cooperation of quadcopter Impact of grey wolf optimization on WSN cluster formation and lifetime expansion The optimization of vehicle routing of communal waste in an urban environment using a nearest neighbirs' algorithm and genetic algorithm: Communal waste vehicle routing optimization in urban areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1