{"title":"面向局域配电网设计的非重叠电源/地平面","authors":"A. Engin, I. Ndip, K. Lang, J. Aguirre","doi":"10.1109/EDAPS.2016.7893111","DOIUrl":null,"url":null,"abstract":"Power/ground planes are used for low IR-drop and inductance, but they also cause switching noise coupling globally across chip packages and printed circuit boards. The switching noise coupling is a concern for mixed-signal boards, high-speed I/Os, and electromagnetic compatibility. In GHz frequency regime, switching noise cannot be controlled by off-chip discrete decoupling capacitors due to their inductance. In this paper we introduce the non-overlapping power/ground planes design methodology for filtering of GHz power plane noise. Unlike existing approaches, our approach is simple, has wide bandwidth, and does not increase IR-drop or inductance.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-overlapping power/ground planes for localized power distribution network design\",\"authors\":\"A. Engin, I. Ndip, K. Lang, J. Aguirre\",\"doi\":\"10.1109/EDAPS.2016.7893111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power/ground planes are used for low IR-drop and inductance, but they also cause switching noise coupling globally across chip packages and printed circuit boards. The switching noise coupling is a concern for mixed-signal boards, high-speed I/Os, and electromagnetic compatibility. In GHz frequency regime, switching noise cannot be controlled by off-chip discrete decoupling capacitors due to their inductance. In this paper we introduce the non-overlapping power/ground planes design methodology for filtering of GHz power plane noise. Unlike existing approaches, our approach is simple, has wide bandwidth, and does not increase IR-drop or inductance.\",\"PeriodicalId\":191549,\"journal\":{\"name\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS.2016.7893111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-overlapping power/ground planes for localized power distribution network design
Power/ground planes are used for low IR-drop and inductance, but they also cause switching noise coupling globally across chip packages and printed circuit boards. The switching noise coupling is a concern for mixed-signal boards, high-speed I/Os, and electromagnetic compatibility. In GHz frequency regime, switching noise cannot be controlled by off-chip discrete decoupling capacitors due to their inductance. In this paper we introduce the non-overlapping power/ground planes design methodology for filtering of GHz power plane noise. Unlike existing approaches, our approach is simple, has wide bandwidth, and does not increase IR-drop or inductance.