低导通电阻4H-SiC VDMOSFET优化设计

Defu Yin, Zhiming Wu, Xian Zou, Yongqiang Sun, Yaping Wu, Weiping Wang, Xu Li, Junyong Kang
{"title":"低导通电阻4H-SiC VDMOSFET优化设计","authors":"Defu Yin, Zhiming Wu, Xian Zou, Yongqiang Sun, Yaping Wu, Weiping Wang, Xu Li, Junyong Kang","doi":"10.1109/SSLChinaIFWS49075.2019.9019763","DOIUrl":null,"url":null,"abstract":"In this work, we develop an optimized VDMOSFET cell structure based on 4H-SiC material. In the optimized structure, two high n-doped regions are added at both sides of the JFET region. Simulation results reveal that the additional n-doped regions not only effectively limit the depletion width in JFET region at ON-state, but also could protect the oxide layer at OFF-state due to depletion expansion. As a result, the optimized structure reduces the specific ON-resistance by 18% while keeping breakdown voltage as roughly high as the conventional structure; meanwhile, the value of figure of merit increases by 22%, which exhibits a significant improvement in device performance.","PeriodicalId":315846,"journal":{"name":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized Design of 4H-SiC VDMOSFET for Low ON-resistance\",\"authors\":\"Defu Yin, Zhiming Wu, Xian Zou, Yongqiang Sun, Yaping Wu, Weiping Wang, Xu Li, Junyong Kang\",\"doi\":\"10.1109/SSLChinaIFWS49075.2019.9019763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we develop an optimized VDMOSFET cell structure based on 4H-SiC material. In the optimized structure, two high n-doped regions are added at both sides of the JFET region. Simulation results reveal that the additional n-doped regions not only effectively limit the depletion width in JFET region at ON-state, but also could protect the oxide layer at OFF-state due to depletion expansion. As a result, the optimized structure reduces the specific ON-resistance by 18% while keeping breakdown voltage as roughly high as the conventional structure; meanwhile, the value of figure of merit increases by 22%, which exhibits a significant improvement in device performance.\",\"PeriodicalId\":315846,\"journal\":{\"name\":\"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSLChinaIFWS49075.2019.9019763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS49075.2019.9019763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们开发了一种基于4H-SiC材料的优化VDMOSFET电池结构。在优化后的结构中,在JFET区域的两侧增加了两个高氮掺杂区域。仿真结果表明,额外的n掺杂区域不仅有效地限制了on状态下JFET区域的耗尽宽度,而且由于耗尽膨胀而保护了off状态下的氧化层。结果表明,优化后的结构在保持击穿电压与传统结构大致相同的情况下,比导通电阻降低了18%;同时,性能图的值提高了22%,显示出器件性能的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Design of 4H-SiC VDMOSFET for Low ON-resistance
In this work, we develop an optimized VDMOSFET cell structure based on 4H-SiC material. In the optimized structure, two high n-doped regions are added at both sides of the JFET region. Simulation results reveal that the additional n-doped regions not only effectively limit the depletion width in JFET region at ON-state, but also could protect the oxide layer at OFF-state due to depletion expansion. As a result, the optimized structure reduces the specific ON-resistance by 18% while keeping breakdown voltage as roughly high as the conventional structure; meanwhile, the value of figure of merit increases by 22%, which exhibits a significant improvement in device performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on high power density light-emting diodes light source Smart Lighting with Autonomous Color Tunability Study on Preparation and Application of Nano-copper Powder for Power Semiconductor Device Packaging Effect of Mechanical Stress on the Electrical Characteristics of Different Type IGBT Chips Design and Characteristics of an Etching Field Limiting Ring for 10kV SiC Power Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1