基于单目视觉的航空发动机叶片损伤三维重建

Jingxuan Cheng, Hongfu Zuo, Hang Fei, Yue Su, Zuocheng Zhou, Zhexun Yuan
{"title":"基于单目视觉的航空发动机叶片损伤三维重建","authors":"Jingxuan Cheng, Hongfu Zuo, Hang Fei, Yue Su, Zuocheng Zhou, Zhexun Yuan","doi":"10.1109/PHM58589.2023.00058","DOIUrl":null,"url":null,"abstract":"Aero-engine blades are one of the most important components of an aero-engine and reducing the cost of repair and maintenance of aero-engine blades is of great economic importance to the aviation industry. Borescope Technology is the most used NDT method in aero-engine overhaul, but it relies too much on the experience of maintenance personnel. We propose to combine 3D reconstruction with Borescope Technology, based on the borescope image, using monocular stereo vision principle, using SIFT algorithm for feature point detection and feature point matching by improved FLANN algorithm, using incremental SFM algorithm for sparse reconstruction of the damaged blade sequence, using PMVS method for dense reconstruction, Poisson reconstruction to enhance the reconstruction effect, and finally get The three-dimensional reconstruction model of blade damage, accurate detection of blade damage, the reconstructed three-dimensional model is the basis of aero-engine overhaul intelligence.","PeriodicalId":196601,"journal":{"name":"2023 Prognostics and Health Management Conference (PHM)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monocular vision-based 3D reconstruction of aero-engine blade damage\",\"authors\":\"Jingxuan Cheng, Hongfu Zuo, Hang Fei, Yue Su, Zuocheng Zhou, Zhexun Yuan\",\"doi\":\"10.1109/PHM58589.2023.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aero-engine blades are one of the most important components of an aero-engine and reducing the cost of repair and maintenance of aero-engine blades is of great economic importance to the aviation industry. Borescope Technology is the most used NDT method in aero-engine overhaul, but it relies too much on the experience of maintenance personnel. We propose to combine 3D reconstruction with Borescope Technology, based on the borescope image, using monocular stereo vision principle, using SIFT algorithm for feature point detection and feature point matching by improved FLANN algorithm, using incremental SFM algorithm for sparse reconstruction of the damaged blade sequence, using PMVS method for dense reconstruction, Poisson reconstruction to enhance the reconstruction effect, and finally get The three-dimensional reconstruction model of blade damage, accurate detection of blade damage, the reconstructed three-dimensional model is the basis of aero-engine overhaul intelligence.\",\"PeriodicalId\":196601,\"journal\":{\"name\":\"2023 Prognostics and Health Management Conference (PHM)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Prognostics and Health Management Conference (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM58589.2023.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Prognostics and Health Management Conference (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM58589.2023.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

航空发动机叶片是航空发动机最重要的部件之一,降低航空发动机叶片的维修保养成本对航空工业具有重要的经济意义。内窥镜技术是航空发动机大修中应用最多的无损检测方法,但对维修人员的经验依赖较大。我们提出将三维重建与Borescope技术相结合,以Borescope图像为基础,利用单眼立体视觉原理,采用SIFT算法进行特征点检测,采用改进的FLANN算法进行特征点匹配,采用增量SFM算法对受损叶片序列进行稀疏重建,采用PMVS方法进行密集重建,泊松重建增强重建效果。最后得到叶片损伤的三维重建模型,对叶片损伤进行准确的检测,重建的三维模型是航空发动机大修智能化的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monocular vision-based 3D reconstruction of aero-engine blade damage
Aero-engine blades are one of the most important components of an aero-engine and reducing the cost of repair and maintenance of aero-engine blades is of great economic importance to the aviation industry. Borescope Technology is the most used NDT method in aero-engine overhaul, but it relies too much on the experience of maintenance personnel. We propose to combine 3D reconstruction with Borescope Technology, based on the borescope image, using monocular stereo vision principle, using SIFT algorithm for feature point detection and feature point matching by improved FLANN algorithm, using incremental SFM algorithm for sparse reconstruction of the damaged blade sequence, using PMVS method for dense reconstruction, Poisson reconstruction to enhance the reconstruction effect, and finally get The three-dimensional reconstruction model of blade damage, accurate detection of blade damage, the reconstructed three-dimensional model is the basis of aero-engine overhaul intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOA analysis of large hydropower station Generating High-Resolution Flight Parameters in Structural Digital Twins Using Deep Learning-based Upsampling Problem Decoupling and Optimization of Aeroengine Life Cycle Maintenance Decision State-of-health prediction of Li-ion NMC Batteries Using Kalman Filter and Gaussian Process Regression An efficient algorithm for task allocation with multi-agent collaboration constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1