柔性砷化镓器件能带工程的新方法

A. Alharbi, D. Shahrjerdi
{"title":"柔性砷化镓器件能带工程的新方法","authors":"A. Alharbi, D. Shahrjerdi","doi":"10.1109/DRC.2016.7548451","DOIUrl":null,"url":null,"abstract":"Flexible electronics based on rigid conventional crystalline semiconductors such as silicon and compound semiconductors is emerging as a new class of technology. At present, the existing approaches for realizing flexible electronics from those materials have focused on maintaining the performance of the original device. Here, we demonstrate a new approach for tailoring the electronic and optoelectronic properties of high-performance flexible devices through strain engineering. In this work, we use flexible gallium arsenide (GaAs) devices as a model system. We show that layer transfer through substrate cracking with a pre-tensioned nickel film can be utilized for engineering the electronic band structure of flexible GaAs devices. We empirically and theoretically quantify the effect of the `engineered' residual strain on the electronic band structure in these flexible GaAs devices. Photoluminescence (PL) and quantum efficiency (QE) measurements indicate the widening of the GaAs energy bandgap due to the residual compressive strain. More importantly, our strain engineering method is universal and can be readily extended to other flexible material systems such as gallium nitride.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for energy band engineering in flexible GaAs devices\",\"authors\":\"A. Alharbi, D. Shahrjerdi\",\"doi\":\"10.1109/DRC.2016.7548451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible electronics based on rigid conventional crystalline semiconductors such as silicon and compound semiconductors is emerging as a new class of technology. At present, the existing approaches for realizing flexible electronics from those materials have focused on maintaining the performance of the original device. Here, we demonstrate a new approach for tailoring the electronic and optoelectronic properties of high-performance flexible devices through strain engineering. In this work, we use flexible gallium arsenide (GaAs) devices as a model system. We show that layer transfer through substrate cracking with a pre-tensioned nickel film can be utilized for engineering the electronic band structure of flexible GaAs devices. We empirically and theoretically quantify the effect of the `engineered' residual strain on the electronic band structure in these flexible GaAs devices. Photoluminescence (PL) and quantum efficiency (QE) measurements indicate the widening of the GaAs energy bandgap due to the residual compressive strain. More importantly, our strain engineering method is universal and can be readily extended to other flexible material systems such as gallium nitride.\",\"PeriodicalId\":310524,\"journal\":{\"name\":\"2016 74th Annual Device Research Conference (DRC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 74th Annual Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2016.7548451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于硅和化合物半导体等刚性传统晶体半导体的柔性电子技术正在成为一种新技术。目前,利用这些材料实现柔性电子器件的现有方法主要集中在保持原始器件的性能上。在这里,我们展示了一种通过应变工程来定制高性能柔性器件的电子和光电子特性的新方法。在这项工作中,我们使用柔性砷化镓(GaAs)器件作为模型系统。研究表明,利用预张紧镍薄膜通过衬底开裂进行层转移可用于柔性砷化镓器件的电子带结构工程。我们从经验和理论上量化了“工程”残余应变对这些柔性GaAs器件中电子能带结构的影响。光致发光(PL)和量子效率(QE)测量表明,由于残余压缩应变,砷化镓能带隙变宽。更重要的是,我们的应变工程方法是通用的,可以很容易地扩展到其他柔性材料系统,如氮化镓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach for energy band engineering in flexible GaAs devices
Flexible electronics based on rigid conventional crystalline semiconductors such as silicon and compound semiconductors is emerging as a new class of technology. At present, the existing approaches for realizing flexible electronics from those materials have focused on maintaining the performance of the original device. Here, we demonstrate a new approach for tailoring the electronic and optoelectronic properties of high-performance flexible devices through strain engineering. In this work, we use flexible gallium arsenide (GaAs) devices as a model system. We show that layer transfer through substrate cracking with a pre-tensioned nickel film can be utilized for engineering the electronic band structure of flexible GaAs devices. We empirically and theoretically quantify the effect of the `engineered' residual strain on the electronic band structure in these flexible GaAs devices. Photoluminescence (PL) and quantum efficiency (QE) measurements indicate the widening of the GaAs energy bandgap due to the residual compressive strain. More importantly, our strain engineering method is universal and can be readily extended to other flexible material systems such as gallium nitride.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint EMC/DRC plenary session Novel materials for next generation photonic devices True random number generation using voltage controlled spin-dice Current saturation and steep switching in graphene PN junctions using angle-dependent scattering Recent developments in mid-infrared quantum cascade lasers and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1