Eunhye Kim, Masaru Takeuchi, Takuto Nomura, Y. Hasegawa, Qiang Huang, Toshio Fukuda
{"title":"基于PEDOT:PSS的模块化生物执行器反馈控制软传感器的研制","authors":"Eunhye Kim, Masaru Takeuchi, Takuto Nomura, Y. Hasegawa, Qiang Huang, Toshio Fukuda","doi":"10.1109/icra46639.2022.9811795","DOIUrl":null,"url":null,"abstract":"In this paper, we fabricated a soft sensor based on PEDOT:PSS for thin film structure. The developed soft sensor can measure the contraction force at real time to be embedded in a modular bio-actuator [1]. The modular actuator generated contraction forces at 0.3 mN when applying electric pulse stimulation. To measure millinewton contraction forces and make a built in sensor, we fabricated a soft sensor using PEDOT:PSS-PDMS film. To verify that the sensor can measure the force of the actuator and can be integrated to the actuator, we analyzed characteristic of the sensor. First, we measure Young's modulus of the sensor and compare them with the bio-actuator. From the previous research [2], the Young's modulus of the bio-actuator and sensor were 45.8 kPa and 165 kPa, respectively. In addition, we simulated the sensors to estimate the change of the displacement according to the applied force. Next, we have experiments by stretching sensors using stepping motor to measure the resistance change of the sensor. From the simulation data, the displacement change is 23 µm when applying 0.3 mN of forces and then we detect the displacement change smaller than is 20 µm from the experiments. Finally, we analyzed the movement of the bio-actuator when applying stimulation using high speed camera and time response of the developed sensor. The actuator was contracted to the maximum after 150 ms from the electrical stimulation and the sensor detected the repeated motion at 10 Hz without time delay. As a result, the proposed sensor can measure the force of bioactuator at real time.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"397 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of PEDOT:PSS based Soft Sensor for Feedback Control of Modular Bio-actuator\",\"authors\":\"Eunhye Kim, Masaru Takeuchi, Takuto Nomura, Y. Hasegawa, Qiang Huang, Toshio Fukuda\",\"doi\":\"10.1109/icra46639.2022.9811795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we fabricated a soft sensor based on PEDOT:PSS for thin film structure. The developed soft sensor can measure the contraction force at real time to be embedded in a modular bio-actuator [1]. The modular actuator generated contraction forces at 0.3 mN when applying electric pulse stimulation. To measure millinewton contraction forces and make a built in sensor, we fabricated a soft sensor using PEDOT:PSS-PDMS film. To verify that the sensor can measure the force of the actuator and can be integrated to the actuator, we analyzed characteristic of the sensor. First, we measure Young's modulus of the sensor and compare them with the bio-actuator. From the previous research [2], the Young's modulus of the bio-actuator and sensor were 45.8 kPa and 165 kPa, respectively. In addition, we simulated the sensors to estimate the change of the displacement according to the applied force. Next, we have experiments by stretching sensors using stepping motor to measure the resistance change of the sensor. From the simulation data, the displacement change is 23 µm when applying 0.3 mN of forces and then we detect the displacement change smaller than is 20 µm from the experiments. Finally, we analyzed the movement of the bio-actuator when applying stimulation using high speed camera and time response of the developed sensor. The actuator was contracted to the maximum after 150 ms from the electrical stimulation and the sensor detected the repeated motion at 10 Hz without time delay. As a result, the proposed sensor can measure the force of bioactuator at real time.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"397 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of PEDOT:PSS based Soft Sensor for Feedback Control of Modular Bio-actuator
In this paper, we fabricated a soft sensor based on PEDOT:PSS for thin film structure. The developed soft sensor can measure the contraction force at real time to be embedded in a modular bio-actuator [1]. The modular actuator generated contraction forces at 0.3 mN when applying electric pulse stimulation. To measure millinewton contraction forces and make a built in sensor, we fabricated a soft sensor using PEDOT:PSS-PDMS film. To verify that the sensor can measure the force of the actuator and can be integrated to the actuator, we analyzed characteristic of the sensor. First, we measure Young's modulus of the sensor and compare them with the bio-actuator. From the previous research [2], the Young's modulus of the bio-actuator and sensor were 45.8 kPa and 165 kPa, respectively. In addition, we simulated the sensors to estimate the change of the displacement according to the applied force. Next, we have experiments by stretching sensors using stepping motor to measure the resistance change of the sensor. From the simulation data, the displacement change is 23 µm when applying 0.3 mN of forces and then we detect the displacement change smaller than is 20 µm from the experiments. Finally, we analyzed the movement of the bio-actuator when applying stimulation using high speed camera and time response of the developed sensor. The actuator was contracted to the maximum after 150 ms from the electrical stimulation and the sensor detected the repeated motion at 10 Hz without time delay. As a result, the proposed sensor can measure the force of bioactuator at real time.