{"title":"芯片上的三维人体心肌:人类ips衍生心肌细胞收缩力的量化","authors":"Y. Morimoto, S. Mori, S. Takeuchi","doi":"10.1109/MEMSYS.2015.7051018","DOIUrl":null,"url":null,"abstract":"We propose a method for constructing fiber-type three-dimensional (3D) tissue of human iPS-derived cardiomyocytes and quantifying its contractile force in response to the addition of drug. By culturing the cardiomyocytes in micropatterned hydrogel with anchors, we succeeded in fabrication of the fibers with aligned cardiomyocytes and fixation of the fiber edges to the anchors. Since the fiber generated contractile force in a single direction due to alignment of cardiomyocytes, we can measure the contractile force accurately. Furthermore, as a demonstration of drug testing, we quantified contractile frequency and force in accordance with concentrations of pilsicainide. We believed that the fiber of human iPS-derived cardiomyocytes will be used in pharmacokinetic applications for drug development.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3D human cardiac muscle on a chip: Quantification of contractile force of human iPS-derived cardiomyocytes\",\"authors\":\"Y. Morimoto, S. Mori, S. Takeuchi\",\"doi\":\"10.1109/MEMSYS.2015.7051018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method for constructing fiber-type three-dimensional (3D) tissue of human iPS-derived cardiomyocytes and quantifying its contractile force in response to the addition of drug. By culturing the cardiomyocytes in micropatterned hydrogel with anchors, we succeeded in fabrication of the fibers with aligned cardiomyocytes and fixation of the fiber edges to the anchors. Since the fiber generated contractile force in a single direction due to alignment of cardiomyocytes, we can measure the contractile force accurately. Furthermore, as a demonstration of drug testing, we quantified contractile frequency and force in accordance with concentrations of pilsicainide. We believed that the fiber of human iPS-derived cardiomyocytes will be used in pharmacokinetic applications for drug development.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7051018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D human cardiac muscle on a chip: Quantification of contractile force of human iPS-derived cardiomyocytes
We propose a method for constructing fiber-type three-dimensional (3D) tissue of human iPS-derived cardiomyocytes and quantifying its contractile force in response to the addition of drug. By culturing the cardiomyocytes in micropatterned hydrogel with anchors, we succeeded in fabrication of the fibers with aligned cardiomyocytes and fixation of the fiber edges to the anchors. Since the fiber generated contractile force in a single direction due to alignment of cardiomyocytes, we can measure the contractile force accurately. Furthermore, as a demonstration of drug testing, we quantified contractile frequency and force in accordance with concentrations of pilsicainide. We believed that the fiber of human iPS-derived cardiomyocytes will be used in pharmacokinetic applications for drug development.