网络入侵监控的数据挖掘实现

Annisa Andarrachmi, W. Wibowo
{"title":"网络入侵监控的数据挖掘实现","authors":"Annisa Andarrachmi, W. Wibowo","doi":"10.1109/ICICoS48119.2019.8982408","DOIUrl":null,"url":null,"abstract":"The Information and Communication Network Center (BJIK) is one of the centers in the Agency for the Assessment and Application of Technology (BPPT). BJIK develops a network monitoring information system called Simontik to protect the BPPT system from threats where antivirus softwares and firewalls fail to give the level of protection needed. The random nature of threats makes it difficult to develop a rule-based system to predict the existence of intrusion. In this research, we apply a deep learning model to predict network intrusion. We found that our deep learning model using deep neural network and random forest algorithm can produce 99.91% accuracy compared to 98.11% using support vector machine algorithm.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Mining Implementation for Monitoring Network Intrusion\",\"authors\":\"Annisa Andarrachmi, W. Wibowo\",\"doi\":\"10.1109/ICICoS48119.2019.8982408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Information and Communication Network Center (BJIK) is one of the centers in the Agency for the Assessment and Application of Technology (BPPT). BJIK develops a network monitoring information system called Simontik to protect the BPPT system from threats where antivirus softwares and firewalls fail to give the level of protection needed. The random nature of threats makes it difficult to develop a rule-based system to predict the existence of intrusion. In this research, we apply a deep learning model to predict network intrusion. We found that our deep learning model using deep neural network and random forest algorithm can produce 99.91% accuracy compared to 98.11% using support vector machine algorithm.\",\"PeriodicalId\":105407,\"journal\":{\"name\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICoS48119.2019.8982408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息和通信网络中心(BJIK)是技术评估和应用机构(BPPT)的中心之一。BJIK开发了一个名为Simontik的网络监控信息系统,以保护BPPT系统免受杀毒软件和防火墙无法提供所需保护的威胁。威胁的随机性使得开发基于规则的系统来预测入侵的存在变得困难。在本研究中,我们应用深度学习模型来预测网络入侵。我们发现使用深度神经网络和随机森林算法的深度学习模型可以产生99.91%的准确率,而使用支持向量机算法的准确率为98.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Mining Implementation for Monitoring Network Intrusion
The Information and Communication Network Center (BJIK) is one of the centers in the Agency for the Assessment and Application of Technology (BPPT). BJIK develops a network monitoring information system called Simontik to protect the BPPT system from threats where antivirus softwares and firewalls fail to give the level of protection needed. The random nature of threats makes it difficult to develop a rule-based system to predict the existence of intrusion. In this research, we apply a deep learning model to predict network intrusion. We found that our deep learning model using deep neural network and random forest algorithm can produce 99.91% accuracy compared to 98.11% using support vector machine algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash Ranking of Game Mechanics for Gamification in Mobile Payment Using AHP-TOPSIS: Uses and Gratification Perspective An Assesment of Knowledge Sharing System: SCeLE Universitas Indonesia Improved Line Operator for Retinal Blood Vessel Segmentation Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1