基于证据距离和信念熵的冲突证据组合方法

Zhan Deng, Jianyu Wang
{"title":"基于证据距离和信念熵的冲突证据组合方法","authors":"Zhan Deng, Jianyu Wang","doi":"10.1109/ICNSC48988.2020.9238076","DOIUrl":null,"url":null,"abstract":"Dempster Shafer evidence theory is widely used in the field of information fusion. However, when there is a high conflict between the evidence, Dempster Shafer fusion method will generate a counter intuitive result. To address this issue, by considering the credibility and uncertainty information of the evidence, we propose a new multi-sensor data fusion method based on Hellinger distance and belief entropy. The new multi-sensor data fusion method consists of three main procedures. Firstly, the probability transformation method is used to transform the basic probability assignment into the probability distribution, then the Hellinger distance is utilized to measure the distance between the evidence, and the credibility of the evidence is calculated by the distance between the evidence. Secondly, considering the information volume of the evidence. In this paper, belief entropy is applied to measure the information volume of the evidence, and then the information volume of the evidence is used to modify the credibility of the evidence. Finally, the credibility of the evidence is taken as a weight factor to modify the original evidence to obtain the weighted average evidence, and then the weighted average evidence is fused with Dempster Shafer combination rule to achieve the final fusion result. Numerical examples and fault diagnosis applications illustrate the effectiveness and accuracy of the proposed method.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conflicting evidence combination method based on evidence distance and belief entropy\",\"authors\":\"Zhan Deng, Jianyu Wang\",\"doi\":\"10.1109/ICNSC48988.2020.9238076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dempster Shafer evidence theory is widely used in the field of information fusion. However, when there is a high conflict between the evidence, Dempster Shafer fusion method will generate a counter intuitive result. To address this issue, by considering the credibility and uncertainty information of the evidence, we propose a new multi-sensor data fusion method based on Hellinger distance and belief entropy. The new multi-sensor data fusion method consists of three main procedures. Firstly, the probability transformation method is used to transform the basic probability assignment into the probability distribution, then the Hellinger distance is utilized to measure the distance between the evidence, and the credibility of the evidence is calculated by the distance between the evidence. Secondly, considering the information volume of the evidence. In this paper, belief entropy is applied to measure the information volume of the evidence, and then the information volume of the evidence is used to modify the credibility of the evidence. Finally, the credibility of the evidence is taken as a weight factor to modify the original evidence to obtain the weighted average evidence, and then the weighted average evidence is fused with Dempster Shafer combination rule to achieve the final fusion result. Numerical examples and fault diagnosis applications illustrate the effectiveness and accuracy of the proposed method.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Dempster Shafer证据理论在信息融合领域得到了广泛的应用。然而,当证据之间存在高度冲突时,Dempster Shafer融合方法会产生反直觉的结果。为了解决这一问题,在考虑证据可信度和不确定性信息的基础上,提出了一种基于海灵格距离和信念熵的多传感器数据融合方法。新的多传感器数据融合方法包括三个主要步骤。首先利用概率变换方法将基本概率赋值转化为概率分布,然后利用海灵格距离度量证据之间的距离,根据证据之间的距离计算证据的可信度。其次,考虑证据的信息量。本文首先利用信念熵来度量证据的信息量,然后利用证据的信息量来修改证据的可信度。最后以证据的可信度作为权重因子对原始证据进行修改,得到加权平均证据,再将加权平均证据与Dempster Shafer组合规则进行融合,得到最终的融合结果。数值算例和故障诊断应用验证了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conflicting evidence combination method based on evidence distance and belief entropy
Dempster Shafer evidence theory is widely used in the field of information fusion. However, when there is a high conflict between the evidence, Dempster Shafer fusion method will generate a counter intuitive result. To address this issue, by considering the credibility and uncertainty information of the evidence, we propose a new multi-sensor data fusion method based on Hellinger distance and belief entropy. The new multi-sensor data fusion method consists of three main procedures. Firstly, the probability transformation method is used to transform the basic probability assignment into the probability distribution, then the Hellinger distance is utilized to measure the distance between the evidence, and the credibility of the evidence is calculated by the distance between the evidence. Secondly, considering the information volume of the evidence. In this paper, belief entropy is applied to measure the information volume of the evidence, and then the information volume of the evidence is used to modify the credibility of the evidence. Finally, the credibility of the evidence is taken as a weight factor to modify the original evidence to obtain the weighted average evidence, and then the weighted average evidence is fused with Dempster Shafer combination rule to achieve the final fusion result. Numerical examples and fault diagnosis applications illustrate the effectiveness and accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1