{"title":"基于深度学习的车辆检测与方向确定研究","authors":"Qianqian Zhu, Hang Li, Weiming Guo","doi":"10.5220/0008849700260031","DOIUrl":null,"url":null,"abstract":"With the increase of vehicle ownership in China, the number of auto insurance cases is also increasing. The detection and direction determination of vehicles involved in auto insurance cases have important applications in the field of intelligent loss assessment. In this paper, a model of vehicle detection and direction determination based on ResNet-101+FPN backbone network and RetinaNet is built by using convolutional neural network in deep learning. Then, the model is trained and tested on the labelled data set. The model has a relatively high accuracy of prediction, in which the accuracy of vehicle detection reaches 98.7%, and the accuracy of the five directions determination of frontal, lateral-frontal, lateral, lateral-back and back reaches 97.2%.","PeriodicalId":186406,"journal":{"name":"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Vehicle Detection and Direction Determination based on Deep Learning\",\"authors\":\"Qianqian Zhu, Hang Li, Weiming Guo\",\"doi\":\"10.5220/0008849700260031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase of vehicle ownership in China, the number of auto insurance cases is also increasing. The detection and direction determination of vehicles involved in auto insurance cases have important applications in the field of intelligent loss assessment. In this paper, a model of vehicle detection and direction determination based on ResNet-101+FPN backbone network and RetinaNet is built by using convolutional neural network in deep learning. Then, the model is trained and tested on the labelled data set. The model has a relatively high accuracy of prediction, in which the accuracy of vehicle detection reaches 98.7%, and the accuracy of the five directions determination of frontal, lateral-frontal, lateral, lateral-back and back reaches 97.2%.\",\"PeriodicalId\":186406,\"journal\":{\"name\":\"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0008849700260031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008849700260031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Vehicle Detection and Direction Determination based on Deep Learning
With the increase of vehicle ownership in China, the number of auto insurance cases is also increasing. The detection and direction determination of vehicles involved in auto insurance cases have important applications in the field of intelligent loss assessment. In this paper, a model of vehicle detection and direction determination based on ResNet-101+FPN backbone network and RetinaNet is built by using convolutional neural network in deep learning. Then, the model is trained and tested on the labelled data set. The model has a relatively high accuracy of prediction, in which the accuracy of vehicle detection reaches 98.7%, and the accuracy of the five directions determination of frontal, lateral-frontal, lateral, lateral-back and back reaches 97.2%.