M. Vekić, I. Isakov, M. Rapaić, S. Grabic, Ivan Todorović, V. Porobić
{"title":"分散式微电网控制“超越下垂”","authors":"M. Vekić, I. Isakov, M. Rapaić, S. Grabic, Ivan Todorović, V. Porobić","doi":"10.1109/ISGT-Europe54678.2022.9960392","DOIUrl":null,"url":null,"abstract":"Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized microgrid control \\\"beyond droop\\\"\",\"authors\":\"M. Vekić, I. Isakov, M. Rapaić, S. Grabic, Ivan Todorović, V. Porobić\",\"doi\":\"10.1109/ISGT-Europe54678.2022.9960392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.\",\"PeriodicalId\":311595,\"journal\":{\"name\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Europe54678.2022.9960392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.