基于自旋电子学的神经形态织物的过程和运行时变化鲁棒性

Soyed Tuhin Ahmed, M. Mayahinia, Michael Hefenbrock, Christopher Münch, M. Tahoori
{"title":"基于自旋电子学的神经形态织物的过程和运行时变化鲁棒性","authors":"Soyed Tuhin Ahmed, M. Mayahinia, Michael Hefenbrock, Christopher Münch, M. Tahoori","doi":"10.1109/ETS54262.2022.9810422","DOIUrl":null,"url":null,"abstract":"Neural Networks (NN) can be efficiently accelerated using emerging resistive non-volatile memories (eNVM), such as Spin Transfer Torque Magnetic RAM(STT-MRAM). However, process variations and runtime temperature fluctuations can lead to miss-quantizing the sensed state and in turn, degradation of inference accuracy. We propose a design-time reference current generation method to improve the robustness of the implemented NN under different thermal and process variation scenarios with no additional runtime hardware overhead compared to existing solutions.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric\",\"authors\":\"Soyed Tuhin Ahmed, M. Mayahinia, Michael Hefenbrock, Christopher Münch, M. Tahoori\",\"doi\":\"10.1109/ETS54262.2022.9810422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Networks (NN) can be efficiently accelerated using emerging resistive non-volatile memories (eNVM), such as Spin Transfer Torque Magnetic RAM(STT-MRAM). However, process variations and runtime temperature fluctuations can lead to miss-quantizing the sensed state and in turn, degradation of inference accuracy. We propose a design-time reference current generation method to improve the robustness of the implemented NN under different thermal and process variation scenarios with no additional runtime hardware overhead compared to existing solutions.\",\"PeriodicalId\":334931,\"journal\":{\"name\":\"2022 IEEE European Test Symposium (ETS)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS54262.2022.9810422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

神经网络(NN)可以使用新兴的电阻性非易失性存储器(eNVM)有效地加速,例如自旋传递扭矩磁性RAM(STT-MRAM)。然而,过程变化和运行时温度波动可能导致对感知状态的误量化,进而降低推理精度。我们提出了一种设计时参考电流生成方法,以提高所实现的神经网络在不同热和过程变化情况下的鲁棒性,与现有解决方案相比,没有额外的运行时硬件开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric
Neural Networks (NN) can be efficiently accelerated using emerging resistive non-volatile memories (eNVM), such as Spin Transfer Torque Magnetic RAM(STT-MRAM). However, process variations and runtime temperature fluctuations can lead to miss-quantizing the sensed state and in turn, degradation of inference accuracy. We propose a design-time reference current generation method to improve the robustness of the implemented NN under different thermal and process variation scenarios with no additional runtime hardware overhead compared to existing solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AMS Test Vector Generation using AMS Verification and IEEE P1687.2 X-Masking for In-System Deterministic Test DFX: Exploring the Design Space for Quality ETS 2022 Foreword TaintLock: Preventing IP Theft through Lightweight Dynamic Scan Encryption using Taint Bits*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1