Soyed Tuhin Ahmed, M. Mayahinia, Michael Hefenbrock, Christopher Münch, M. Tahoori
{"title":"基于自旋电子学的神经形态织物的过程和运行时变化鲁棒性","authors":"Soyed Tuhin Ahmed, M. Mayahinia, Michael Hefenbrock, Christopher Münch, M. Tahoori","doi":"10.1109/ETS54262.2022.9810422","DOIUrl":null,"url":null,"abstract":"Neural Networks (NN) can be efficiently accelerated using emerging resistive non-volatile memories (eNVM), such as Spin Transfer Torque Magnetic RAM(STT-MRAM). However, process variations and runtime temperature fluctuations can lead to miss-quantizing the sensed state and in turn, degradation of inference accuracy. We propose a design-time reference current generation method to improve the robustness of the implemented NN under different thermal and process variation scenarios with no additional runtime hardware overhead compared to existing solutions.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric\",\"authors\":\"Soyed Tuhin Ahmed, M. Mayahinia, Michael Hefenbrock, Christopher Münch, M. Tahoori\",\"doi\":\"10.1109/ETS54262.2022.9810422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Networks (NN) can be efficiently accelerated using emerging resistive non-volatile memories (eNVM), such as Spin Transfer Torque Magnetic RAM(STT-MRAM). However, process variations and runtime temperature fluctuations can lead to miss-quantizing the sensed state and in turn, degradation of inference accuracy. We propose a design-time reference current generation method to improve the robustness of the implemented NN under different thermal and process variation scenarios with no additional runtime hardware overhead compared to existing solutions.\",\"PeriodicalId\":334931,\"journal\":{\"name\":\"2022 IEEE European Test Symposium (ETS)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS54262.2022.9810422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric
Neural Networks (NN) can be efficiently accelerated using emerging resistive non-volatile memories (eNVM), such as Spin Transfer Torque Magnetic RAM(STT-MRAM). However, process variations and runtime temperature fluctuations can lead to miss-quantizing the sensed state and in turn, degradation of inference accuracy. We propose a design-time reference current generation method to improve the robustness of the implemented NN under different thermal and process variation scenarios with no additional runtime hardware overhead compared to existing solutions.