应用化学计量学评价尾矿部分替代水泥的潜力

Anne Mette T. Simonsen, K. B. Pedersen, P. Jensen
{"title":"应用化学计量学评价尾矿部分替代水泥的潜力","authors":"Anne Mette T. Simonsen, K. B. Pedersen, P. Jensen","doi":"10.18502/keg.v5i4.6808","DOIUrl":null,"url":null,"abstract":"This study investigates the utilization of mine tailings, the by-product originating from metal- and mineral-based ore mining, as a new cement replacement material. This paper is based on the chemical and physical characteristics of 13 mine tailing samples. In this study, Chemometrics were applied to consider all parameters simultaneously and obtain a thorough screening of potential relations in the large data set. Hierarchical Cluster Analysis (HCA) groups samples according to (dis)similar features and Principal Component Analysis (PCA) visualizes predominating variables and relations to samples. The application of HCA highlighted a clear grouping between mine tailings according to characteristics. Meanwhile, PCA identified the predominant chemical and physical characteristics in the mine tailing samples. Chemometrics therefore provided a thorough overview of mine tailings’ physical and chemical characteristics. \nKeywords: mine tailings, chemometrics, cement replacement","PeriodicalId":106635,"journal":{"name":"KnE Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Chemometrics to Evaluate Mine Tailings’ Potential As Partial Cement Replacement\",\"authors\":\"Anne Mette T. Simonsen, K. B. Pedersen, P. Jensen\",\"doi\":\"10.18502/keg.v5i4.6808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the utilization of mine tailings, the by-product originating from metal- and mineral-based ore mining, as a new cement replacement material. This paper is based on the chemical and physical characteristics of 13 mine tailing samples. In this study, Chemometrics were applied to consider all parameters simultaneously and obtain a thorough screening of potential relations in the large data set. Hierarchical Cluster Analysis (HCA) groups samples according to (dis)similar features and Principal Component Analysis (PCA) visualizes predominating variables and relations to samples. The application of HCA highlighted a clear grouping between mine tailings according to characteristics. Meanwhile, PCA identified the predominant chemical and physical characteristics in the mine tailing samples. Chemometrics therefore provided a thorough overview of mine tailings’ physical and chemical characteristics. \\nKeywords: mine tailings, chemometrics, cement replacement\",\"PeriodicalId\":106635,\"journal\":{\"name\":\"KnE Engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KnE Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/keg.v5i4.6808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/keg.v5i4.6808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了利用金属和矿物基矿石开采的副产品尾矿作为一种新的水泥替代材料。本文以13个矿山尾矿样品的化学物理特性为研究对象。在本研究中,化学计量学被应用于同时考虑所有参数,并在大数据集中获得潜在关系的彻底筛选。层次聚类分析(HCA)根据(dis)相似的特征对样本进行分组,主成分分析(PCA)将主导变量和与样本的关系可视化。HCA的应用突出了尾矿之间按特征进行清晰分组的特点。同时,通过主成分分析,确定了尾矿样品的主要化学和物理特征。因此,化学计量学提供了对尾矿物理和化学特性的全面概述。关键词:尾矿,化学计量学,水泥置换
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Chemometrics to Evaluate Mine Tailings’ Potential As Partial Cement Replacement
This study investigates the utilization of mine tailings, the by-product originating from metal- and mineral-based ore mining, as a new cement replacement material. This paper is based on the chemical and physical characteristics of 13 mine tailing samples. In this study, Chemometrics were applied to consider all parameters simultaneously and obtain a thorough screening of potential relations in the large data set. Hierarchical Cluster Analysis (HCA) groups samples according to (dis)similar features and Principal Component Analysis (PCA) visualizes predominating variables and relations to samples. The application of HCA highlighted a clear grouping between mine tailings according to characteristics. Meanwhile, PCA identified the predominant chemical and physical characteristics in the mine tailing samples. Chemometrics therefore provided a thorough overview of mine tailings’ physical and chemical characteristics. Keywords: mine tailings, chemometrics, cement replacement
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximate and Sensory Analysis of Homemade Kersen (Muntingia calabura) Jam with Stevia Extract Substitution Implementation of Simagin (Industrial Internship Information System) Based on a Website at Politeknik Negeri Media Kreatif PSDKU Makassar, , Indonesia Validity, Practicality and Effectiveness of E-module Teaching Materials in the Learning Subject Applied Mathematics in Students Analysis in Making Animation Movements Using Traditional Methods (Keyframe) and Motion Capture Methods Development of Basic Housekeeping Virtual Reality Learning Module For Students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1