允许极大极小的错误:克服无差异

F. Wisser
{"title":"允许极大极小的错误:克服无差异","authors":"F. Wisser","doi":"10.1109/ICTAI.2013.22","DOIUrl":null,"url":null,"abstract":"We propose Error Allowing Minimax, an algorithm resolving indifferences in the choices of pure minimax players in games of perfect information, to give the opponent the biggest possible target for errors. In contrast to the usual approach of defining a domain-specific static evaluation function with an infinite codomain, we achieve fine-grained positional evaluations by general considerations of the game tree only. To achieve applicability to real-world situations we develop Error Allowing Alpha-Beta, a variant of the standard Alpha-Beta algorithm, and a variant hybridizing these two algorithms, allowing full control over the trade-off between accuracy and computational complexity. We investigate the impact of the algorithm applying it to the perfect information game Dots and Boxes.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error Allowing Minimax: Getting over Indifference\",\"authors\":\"F. Wisser\",\"doi\":\"10.1109/ICTAI.2013.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Error Allowing Minimax, an algorithm resolving indifferences in the choices of pure minimax players in games of perfect information, to give the opponent the biggest possible target for errors. In contrast to the usual approach of defining a domain-specific static evaluation function with an infinite codomain, we achieve fine-grained positional evaluations by general considerations of the game tree only. To achieve applicability to real-world situations we develop Error Allowing Alpha-Beta, a variant of the standard Alpha-Beta algorithm, and a variant hybridizing these two algorithms, allowing full control over the trade-off between accuracy and computational complexity. We investigate the impact of the algorithm applying it to the perfect information game Dots and Boxes.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种解决完全信息博弈中纯极大极小玩家选择无关的算法——误差允许极大极小算法,以给对手最大可能的错误目标。与通常定义具有无限上域的特定领域静态评估函数的方法相反,我们仅通过游戏树的一般考虑来实现细粒度的位置评估。为了实现对现实世界情况的适用性,我们开发了允许误差的Alpha-Beta算法,这是标准Alpha-Beta算法的一种变体,以及混合这两种算法的变体,允许完全控制精度和计算复杂性之间的权衡。我们研究了将该算法应用于完美信息博弈“点与盒”的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error Allowing Minimax: Getting over Indifference
We propose Error Allowing Minimax, an algorithm resolving indifferences in the choices of pure minimax players in games of perfect information, to give the opponent the biggest possible target for errors. In contrast to the usual approach of defining a domain-specific static evaluation function with an infinite codomain, we achieve fine-grained positional evaluations by general considerations of the game tree only. To achieve applicability to real-world situations we develop Error Allowing Alpha-Beta, a variant of the standard Alpha-Beta algorithm, and a variant hybridizing these two algorithms, allowing full control over the trade-off between accuracy and computational complexity. We investigate the impact of the algorithm applying it to the perfect information game Dots and Boxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Algorithm Selection Approach for Planning Learning Useful Macro-actions for Planning with N-Grams Optimizing Dynamic Ensemble Selection Procedure by Evolutionary Extreme Learning Machines and a Noise Reduction Filter Motion-Driven Action-Based Planning Assessing Procedural Knowledge in Free-Text Answers through a Hybrid Semantic Web Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1