自主系统安全决策的元推理

Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein
{"title":"自主系统安全决策的元推理","authors":"Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein","doi":"10.1109/icra46639.2022.9811887","DOIUrl":null,"url":null,"abstract":"Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metareasoning for Safe Decision Making in Autonomous Systems\",\"authors\":\"Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein\",\"doi\":\"10.1109/icra46639.2022.9811887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管专家们仔细地定义了自主系统的高层决策模型,但在运行过程中,保证每个场景的安全是不可行的。因此,我们提出了一种安全元推理系统,该系统优化了系统安全问题的严重性和对系统任务的干扰:系统并行执行一个任务进程,该任务进程完成了指定的任务,而每个安全进程都通过一个冲突解决器来解决指定的安全问题。本文给出了安全元推理系统的正式定义,安全过程的推荐算法,冲突解决器的仲裁算法,我们的方法在行星漫游者探测中的应用,并在仿真中证明了我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metareasoning for Safe Decision Making in Autonomous Systems
Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1