Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein
{"title":"自主系统安全决策的元推理","authors":"Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein","doi":"10.1109/icra46639.2022.9811887","DOIUrl":null,"url":null,"abstract":"Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metareasoning for Safe Decision Making in Autonomous Systems\",\"authors\":\"Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein\",\"doi\":\"10.1109/icra46639.2022.9811887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metareasoning for Safe Decision Making in Autonomous Systems
Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.