{"title":"用于功能增强晶体管的MX2型2D材料的载流子控制","authors":"S. Nakaharai","doi":"10.1049/PBCS039E_CH5","DOIUrl":null,"url":null,"abstract":"The book chapter highlights the application of MX2 type 2D materials to the polarity-controllable transistors, especially focused on the polarity control of carriers injected into TMDC materials. One of the bottlenecks in realization of polarity-controllable transistors consists in carrier injection of both electrons and holes into intrinsic semiconductor channel through Schottky junctions, and therefore, a novel method overcoming this bottleneck had been desired. Here, it was reviewed that the new kind of semiconducting materials of TMDCs has a promising feature for this purpose, and also, MoTe2, which is one of the TMDC family, has a great potential for polarity controllable transistors for its weak Fermi level pinning effect.","PeriodicalId":270370,"journal":{"name":"Functionality-Enhanced Devices An alternative to Moore's Law","volume":"6 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrier type control of MX2 type 2D materials for functionality-enhanced transistors\",\"authors\":\"S. Nakaharai\",\"doi\":\"10.1049/PBCS039E_CH5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The book chapter highlights the application of MX2 type 2D materials to the polarity-controllable transistors, especially focused on the polarity control of carriers injected into TMDC materials. One of the bottlenecks in realization of polarity-controllable transistors consists in carrier injection of both electrons and holes into intrinsic semiconductor channel through Schottky junctions, and therefore, a novel method overcoming this bottleneck had been desired. Here, it was reviewed that the new kind of semiconducting materials of TMDCs has a promising feature for this purpose, and also, MoTe2, which is one of the TMDC family, has a great potential for polarity controllable transistors for its weak Fermi level pinning effect.\",\"PeriodicalId\":270370,\"journal\":{\"name\":\"Functionality-Enhanced Devices An alternative to Moore's Law\",\"volume\":\"6 21\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functionality-Enhanced Devices An alternative to Moore's Law\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/PBCS039E_CH5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functionality-Enhanced Devices An alternative to Moore's Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBCS039E_CH5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carrier type control of MX2 type 2D materials for functionality-enhanced transistors
The book chapter highlights the application of MX2 type 2D materials to the polarity-controllable transistors, especially focused on the polarity control of carriers injected into TMDC materials. One of the bottlenecks in realization of polarity-controllable transistors consists in carrier injection of both electrons and holes into intrinsic semiconductor channel through Schottky junctions, and therefore, a novel method overcoming this bottleneck had been desired. Here, it was reviewed that the new kind of semiconducting materials of TMDCs has a promising feature for this purpose, and also, MoTe2, which is one of the TMDC family, has a great potential for polarity controllable transistors for its weak Fermi level pinning effect.