{"title":"移动机器人的非完整避碰镇定","authors":"H. Tanner, S. Loizou, K. Kyriakopoulos","doi":"10.1109/IROS.2001.977149","DOIUrl":null,"url":null,"abstract":"This paper presents a motion planner and nonholonomic controller for a mobile robot, with global collision avoidance and convergence properties. An appropriately designed (dipolar) potential field is combined with discontinuous state feedback. A new class of Lyapunov functions is introduced and used for nonholonomic navigation. The obstacle avoidance and global asymptotic stability properties are verified through simulations.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"451 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Nonholonomic stabilization with collision avoidance for mobile robots\",\"authors\":\"H. Tanner, S. Loizou, K. Kyriakopoulos\",\"doi\":\"10.1109/IROS.2001.977149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a motion planner and nonholonomic controller for a mobile robot, with global collision avoidance and convergence properties. An appropriately designed (dipolar) potential field is combined with discontinuous state feedback. A new class of Lyapunov functions is introduced and used for nonholonomic navigation. The obstacle avoidance and global asymptotic stability properties are verified through simulations.\",\"PeriodicalId\":319679,\"journal\":{\"name\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"volume\":\"451 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2001.977149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.977149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonholonomic stabilization with collision avoidance for mobile robots
This paper presents a motion planner and nonholonomic controller for a mobile robot, with global collision avoidance and convergence properties. An appropriately designed (dipolar) potential field is combined with discontinuous state feedback. A new class of Lyapunov functions is introduced and used for nonholonomic navigation. The obstacle avoidance and global asymptotic stability properties are verified through simulations.