多类代价敏感学习贝叶斯分类器的两两优化

Clément Charnay, N. Lachiche, Agnès Braud
{"title":"多类代价敏感学习贝叶斯分类器的两两优化","authors":"Clément Charnay, N. Lachiche, Agnès Braud","doi":"10.1109/ICTAI.2013.80","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach to enhance the performance of Bayesian classifiers. Our method relies on the combination of two ideas: pairwise classification on the one hand, and threshold optimization on the other hand. Introducing one threshold per pair of classes increases the expressivity of the model, therefore its performance on complex problems such as cost-sensitive problems increases as well. Indeed a comparison of our algorithm to other cost-sensitive approaches shows that it reduces the total misclassification cost.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Pairwise Optimization of Bayesian Classifiers for Multi-class Cost-Sensitive Learning\",\"authors\":\"Clément Charnay, N. Lachiche, Agnès Braud\",\"doi\":\"10.1109/ICTAI.2013.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new approach to enhance the performance of Bayesian classifiers. Our method relies on the combination of two ideas: pairwise classification on the one hand, and threshold optimization on the other hand. Introducing one threshold per pair of classes increases the expressivity of the model, therefore its performance on complex problems such as cost-sensitive problems increases as well. Indeed a comparison of our algorithm to other cost-sensitive approaches shows that it reduces the total misclassification cost.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种提高贝叶斯分类器性能的新方法。我们的方法依赖于两个思想的结合:一方面是两两分类,另一方面是阈值优化。每对类引入一个阈值可以提高模型的表达能力,因此它在复杂问题(如成本敏感问题)上的性能也会提高。事实上,我们的算法与其他代价敏感的方法的比较表明,它减少了总误分类代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pairwise Optimization of Bayesian Classifiers for Multi-class Cost-Sensitive Learning
In this paper, we present a new approach to enhance the performance of Bayesian classifiers. Our method relies on the combination of two ideas: pairwise classification on the one hand, and threshold optimization on the other hand. Introducing one threshold per pair of classes increases the expressivity of the model, therefore its performance on complex problems such as cost-sensitive problems increases as well. Indeed a comparison of our algorithm to other cost-sensitive approaches shows that it reduces the total misclassification cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Algorithm Selection Approach for Planning Learning Useful Macro-actions for Planning with N-Grams Optimizing Dynamic Ensemble Selection Procedure by Evolutionary Extreme Learning Machines and a Noise Reduction Filter Motion-Driven Action-Based Planning Assessing Procedural Knowledge in Free-Text Answers through a Hybrid Semantic Web Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1