H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, K. Shikano
{"title":"基于信息几何学习的simo模型ICA对彩色输入驱动的MIMO系统进行盲分离和反卷积","authors":"H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, K. Shikano","doi":"10.1109/NNSP.2003.1318037","DOIUrl":null,"url":null,"abstract":"We propose a new two-stage blind separation and deconvolution algorithm for multiple-input multiple-output (MIMO)- FIR system driven by colored sound sources, in which a new single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources. After SIMO-ICA, a simple blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated. The simulation results reveal that the proposed algorithm can successfully achieve the separation and deconvolution for a convolutive mixture of speech.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Blind separation and deconvolution of MIMO system driven by colored inputs using SIMO-model-based ICA with information-geometric learning\",\"authors\":\"H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, K. Shikano\",\"doi\":\"10.1109/NNSP.2003.1318037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new two-stage blind separation and deconvolution algorithm for multiple-input multiple-output (MIMO)- FIR system driven by colored sound sources, in which a new single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources. After SIMO-ICA, a simple blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated. The simulation results reveal that the proposed algorithm can successfully achieve the separation and deconvolution for a convolutive mixture of speech.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blind separation and deconvolution of MIMO system driven by colored inputs using SIMO-model-based ICA with information-geometric learning
We propose a new two-stage blind separation and deconvolution algorithm for multiple-input multiple-output (MIMO)- FIR system driven by colored sound sources, in which a new single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources. After SIMO-ICA, a simple blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated. The simulation results reveal that the proposed algorithm can successfully achieve the separation and deconvolution for a convolutive mixture of speech.