基于信息几何学习的simo模型ICA对彩色输入驱动的MIMO系统进行盲分离和反卷积

H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, K. Shikano
{"title":"基于信息几何学习的simo模型ICA对彩色输入驱动的MIMO系统进行盲分离和反卷积","authors":"H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, K. Shikano","doi":"10.1109/NNSP.2003.1318037","DOIUrl":null,"url":null,"abstract":"We propose a new two-stage blind separation and deconvolution algorithm for multiple-input multiple-output (MIMO)- FIR system driven by colored sound sources, in which a new single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources. After SIMO-ICA, a simple blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated. The simulation results reveal that the proposed algorithm can successfully achieve the separation and deconvolution for a convolutive mixture of speech.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Blind separation and deconvolution of MIMO system driven by colored inputs using SIMO-model-based ICA with information-geometric learning\",\"authors\":\"H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, K. Shikano\",\"doi\":\"10.1109/NNSP.2003.1318037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new two-stage blind separation and deconvolution algorithm for multiple-input multiple-output (MIMO)- FIR system driven by colored sound sources, in which a new single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources. After SIMO-ICA, a simple blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated. The simulation results reveal that the proposed algorithm can successfully achieve the separation and deconvolution for a convolutive mixture of speech.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对彩色声源驱动的多输入多输出(MIMO)- FIR系统,提出了一种新的两级盲分离和反卷积算法,该算法将一种新的基于单输入多输出(SIMO)模型的ICA (SIMO-ICA)和盲多通道反滤波相结合。SIMO-ICA可以将混合信号分离,而不是将其分离为单源信号,而是将其分离为独立源的基于simo模型的信号。在SIMO- ica之后,即使每个源信号都是时间相关的,SIMO模型也可以应用简单的盲反褶积技术。仿真结果表明,该算法能够成功地实现卷积混合语音的分离和反卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind separation and deconvolution of MIMO system driven by colored inputs using SIMO-model-based ICA with information-geometric learning
We propose a new two-stage blind separation and deconvolution algorithm for multiple-input multiple-output (MIMO)- FIR system driven by colored sound sources, in which a new single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources. After SIMO-ICA, a simple blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated. The simulation results reveal that the proposed algorithm can successfully achieve the separation and deconvolution for a convolutive mixture of speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1