{"title":"小波方法在静止图像去噪中的应用","authors":"W. Lu","doi":"10.1109/ACSSC.1997.679193","DOIUrl":null,"url":null,"abstract":"This paper describes three wavelet-based methods for noise reduction of still images: (i) hyperbolic shrinkage with a level-dependent thresholding policy; (ii) hyperbolic shrinkage with a two-dimensional cross-validation-based thresholding; and (iii) block SVD-wavelet denoising. All three methods make use of hyperbolic shrinkage rather than conventional soft shrinkage. As the thresholding of wavelet coefficients is concerned, at each level of wavelet decomposition, the first method employs a level-dependent universal threshold determined by the coefficient variance and the number of the coefficients at that level; while the second method extends Nason's (1994) cross-validation approach to the 2-D case. In the third method, an image is divided into several subimages (blocks) and singular value decomposition (SVD) is applied to each block. The singular values obtained are then truncated and each pair of singular vectors are treated as 1-D noisy signals and are denoised using a wavelet-based method. The subimages are then reconstructed using the truncated singular values and denoised singular vectors.","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Wavelet approaches to still image denoising\",\"authors\":\"W. Lu\",\"doi\":\"10.1109/ACSSC.1997.679193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes three wavelet-based methods for noise reduction of still images: (i) hyperbolic shrinkage with a level-dependent thresholding policy; (ii) hyperbolic shrinkage with a two-dimensional cross-validation-based thresholding; and (iii) block SVD-wavelet denoising. All three methods make use of hyperbolic shrinkage rather than conventional soft shrinkage. As the thresholding of wavelet coefficients is concerned, at each level of wavelet decomposition, the first method employs a level-dependent universal threshold determined by the coefficient variance and the number of the coefficients at that level; while the second method extends Nason's (1994) cross-validation approach to the 2-D case. In the third method, an image is divided into several subimages (blocks) and singular value decomposition (SVD) is applied to each block. The singular values obtained are then truncated and each pair of singular vectors are treated as 1-D noisy signals and are denoised using a wavelet-based method. The subimages are then reconstructed using the truncated singular values and denoised singular vectors.\",\"PeriodicalId\":240431,\"journal\":{\"name\":\"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1997.679193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1997.679193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文描述了三种基于小波的静态图像降噪方法:(i)基于水平相关阈值策略的双曲收缩;(ii)双曲收缩与二维交叉验证为基础的阈值;(iii)分块svd -小波去噪。这三种方法都使用双曲线收缩而不是传统的软收缩。就小波系数的阈值设定而言,第一种方法在小波分解的每一层次上,采用由系数方差和该层次上的系数个数决定的与水平相关的通用阈值;而第二种方法将Nason(1994)的交叉验证方法扩展到二维情况。在第三种方法中,将图像分成若干子图像(块),并对每个块应用奇异值分解(SVD)。然后截断得到的奇异值,并将每对奇异向量作为一维噪声信号处理,并使用基于小波的方法去噪。然后利用截断的奇异值和去噪的奇异向量重构子图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wavelet approaches to still image denoising
This paper describes three wavelet-based methods for noise reduction of still images: (i) hyperbolic shrinkage with a level-dependent thresholding policy; (ii) hyperbolic shrinkage with a two-dimensional cross-validation-based thresholding; and (iii) block SVD-wavelet denoising. All three methods make use of hyperbolic shrinkage rather than conventional soft shrinkage. As the thresholding of wavelet coefficients is concerned, at each level of wavelet decomposition, the first method employs a level-dependent universal threshold determined by the coefficient variance and the number of the coefficients at that level; while the second method extends Nason's (1994) cross-validation approach to the 2-D case. In the third method, an image is divided into several subimages (blocks) and singular value decomposition (SVD) is applied to each block. The singular values obtained are then truncated and each pair of singular vectors are treated as 1-D noisy signals and are denoised using a wavelet-based method. The subimages are then reconstructed using the truncated singular values and denoised singular vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study of multiple accessing schemes Self-affine modeling of speech signal in speech compression A progressive transmission image coder using linear phase paraunitary filter banks A canonical representation for distributions of adaptive matched subspace detectors Finite length equalization for FFT-based multicarrier systems-an error-whitening viewpoint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1