生产动态的数据驱动建模

S. Arima, Yu Sasaki, Sho Morie, Yuto Kataoka, Chending Mao, Jia Lin
{"title":"生产动态的数据驱动建模","authors":"S. Arima, Yu Sasaki, Sho Morie, Yuto Kataoka, Chending Mao, Jia Lin","doi":"10.1109/ISSM55802.2022.10026908","DOIUrl":null,"url":null,"abstract":"This study introduced the application of VAR-LiNGAM, and Backpropagation Neural Network with node2vec for feasible data-driven modeling of dynamics of semiconductor production system in which the scale and complexity increase more and more. Open testbed SMT2020 is used evaluations.","PeriodicalId":130513,"journal":{"name":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Modeling for Production Dynamics\",\"authors\":\"S. Arima, Yu Sasaki, Sho Morie, Yuto Kataoka, Chending Mao, Jia Lin\",\"doi\":\"10.1109/ISSM55802.2022.10026908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduced the application of VAR-LiNGAM, and Backpropagation Neural Network with node2vec for feasible data-driven modeling of dynamics of semiconductor production system in which the scale and complexity increase more and more. Open testbed SMT2020 is used evaluations.\",\"PeriodicalId\":130513,\"journal\":{\"name\":\"2022 International Symposium on Semiconductor Manufacturing (ISSM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Semiconductor Manufacturing (ISSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM55802.2022.10026908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM55802.2022.10026908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了应用VAR-LiNGAM和基于node2vec的反向传播神经网络,对规模和复杂性日益增加的半导体生产系统进行可行的数据驱动动力学建模。开放试验台SMT2020是用来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven Modeling for Production Dynamics
This study introduced the application of VAR-LiNGAM, and Backpropagation Neural Network with node2vec for feasible data-driven modeling of dynamics of semiconductor production system in which the scale and complexity increase more and more. Open testbed SMT2020 is used evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Status of EUV Lithography, What is the Stochastic Issues? Hydrogen diffusion behavior in CH4N-molecularion-implanted wafers for three-dimensional stacked CMOS image sensors Maintenance Content Reduction and Digitalization for Performance Optimization Self-tuning Optimization to Compatible the Delivery and Low Energy Consumption Experimentally Study on the Effect of RIE Etching Power on Etching Rate of $\beta-\text{Ga}_{2}\mathrm{O}_{3}$ Thin Film
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1