基于深度CNN模型的自主导航辅助室内目标分类

Mouna Afif, R. Ayachi, Yahia Said, E. Pissaloux, Mohamed Atri
{"title":"基于深度CNN模型的自主导航辅助室内目标分类","authors":"Mouna Afif, R. Ayachi, Yahia Said, E. Pissaloux, Mohamed Atri","doi":"10.1109/IWMN.2019.8805042","DOIUrl":null,"url":null,"abstract":"Indoor object classification is a key element for indoor navigation assistance systems. Indoor objects knowledge helps Visually Impaired People (VIP) in their indoor navigation and facilitates their daily life. This paper proposes a new classification system used especially for indoor object recognition based on Deep Convolutional Neural Network (DCNN) model which can be implemented on mobile embedded platforms. Experimental results obtained using natural images (with natural illumination) from the MCIndoor 20000 dataset show that the proposed approach achieves almost100% accuracy for indoor object classification.","PeriodicalId":272577,"journal":{"name":"2019 IEEE International Symposium on Measurements & Networking (M&N)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Indoor Object C1assification for Autonomous Navigation Assistance Based on Deep CNN Model\",\"authors\":\"Mouna Afif, R. Ayachi, Yahia Said, E. Pissaloux, Mohamed Atri\",\"doi\":\"10.1109/IWMN.2019.8805042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor object classification is a key element for indoor navigation assistance systems. Indoor objects knowledge helps Visually Impaired People (VIP) in their indoor navigation and facilitates their daily life. This paper proposes a new classification system used especially for indoor object recognition based on Deep Convolutional Neural Network (DCNN) model which can be implemented on mobile embedded platforms. Experimental results obtained using natural images (with natural illumination) from the MCIndoor 20000 dataset show that the proposed approach achieves almost100% accuracy for indoor object classification.\",\"PeriodicalId\":272577,\"journal\":{\"name\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2019.8805042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2019.8805042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

室内目标分类是室内导航辅助系统的关键。室内物体知识可以帮助视障人士在室内导航,方便他们的日常生活。本文提出了一种新的基于深度卷积神经网络(DCNN)模型的室内目标识别分类系统,该系统可在移动嵌入式平台上实现。使用MCIndoor 20000数据集的自然图像(自然光照下)进行的实验结果表明,该方法对室内目标的分类准确率接近100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor Object C1assification for Autonomous Navigation Assistance Based on Deep CNN Model
Indoor object classification is a key element for indoor navigation assistance systems. Indoor objects knowledge helps Visually Impaired People (VIP) in their indoor navigation and facilitates their daily life. This paper proposes a new classification system used especially for indoor object recognition based on Deep Convolutional Neural Network (DCNN) model which can be implemented on mobile embedded platforms. Experimental results obtained using natural images (with natural illumination) from the MCIndoor 20000 dataset show that the proposed approach achieves almost100% accuracy for indoor object classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Novel Measurement Technique for Emulating Real Life Environment within a Semi Reverberating Chamber Indoor Location Services through Multi-Source Learning-based Radio Fingerprinting Techniques Passive Peak Voltage Sensor for Multiple Sending Coils Inductive Power Transmission System Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks A measurement procedure for the optimization of a distributed indoor localization system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1