{"title":"基于密集连接的目标检测算法","authors":"Pang Zhihao, Chen Ying","doi":"10.1109/IAEAC47372.2019.8997591","DOIUrl":null,"url":null,"abstract":"The way that information propagates in neural networks is of great importance. In this paper, we propose a connectivity pattern: dense connection, aiming to solve object detection algorithm YOLO-Tiny with less convolutional layers, low feature utilization rate, low precision and poor detection of small objects. We integrate dense connection into YOLO-Tiny, increasing its convolutional layers and improving the feature extraction network. Improved network extracts feature maps and fuses the feature maps by using the Dense Block module. Detection network completes the classification and location at different scales with different anchor boxes. We tested improved network on the Pascal VOC dataset. The experimental results show that our network has improved accuracy by 15% compared with the original algorithm. Although the detection speed has increased, it can still meet the requirements of real-time detection. Compared with the YOLO-Tiny model, our model size only increases by 9.8. MB, compared to the YOLO model, the model size is about 1/5 of the original.","PeriodicalId":164163,"journal":{"name":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Object Detection Algorithm based on Dense Connection\",\"authors\":\"Pang Zhihao, Chen Ying\",\"doi\":\"10.1109/IAEAC47372.2019.8997591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The way that information propagates in neural networks is of great importance. In this paper, we propose a connectivity pattern: dense connection, aiming to solve object detection algorithm YOLO-Tiny with less convolutional layers, low feature utilization rate, low precision and poor detection of small objects. We integrate dense connection into YOLO-Tiny, increasing its convolutional layers and improving the feature extraction network. Improved network extracts feature maps and fuses the feature maps by using the Dense Block module. Detection network completes the classification and location at different scales with different anchor boxes. We tested improved network on the Pascal VOC dataset. The experimental results show that our network has improved accuracy by 15% compared with the original algorithm. Although the detection speed has increased, it can still meet the requirements of real-time detection. Compared with the YOLO-Tiny model, our model size only increases by 9.8. MB, compared to the YOLO model, the model size is about 1/5 of the original.\",\"PeriodicalId\":164163,\"journal\":{\"name\":\"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"320 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC47372.2019.8997591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC47372.2019.8997591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

信息在神经网络中的传播方式非常重要。本文提出了一种连接模式:密集连接,旨在解决目标检测算法YOLO-Tiny卷积层数少、特征利用率低、精度低、小目标检测能力差的问题。我们将密集连接集成到YOLO-Tiny中,增加了它的卷积层,改进了特征提取网络。改进后的网络利用Dense Block模块提取特征图并融合特征图。探测网络利用不同的锚箱完成不同尺度的分类定位。我们在Pascal VOC数据集上测试了改进后的网络。实验结果表明,与原算法相比,该网络的准确率提高了15%。虽然检测速度有所提高,但仍能满足实时检测的要求。与YOLO-Tiny模型相比,我们的模型尺寸只增加了9.8。MB,与YOLO模型相比,模型尺寸约为原模型的1/5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Detection Algorithm based on Dense Connection
The way that information propagates in neural networks is of great importance. In this paper, we propose a connectivity pattern: dense connection, aiming to solve object detection algorithm YOLO-Tiny with less convolutional layers, low feature utilization rate, low precision and poor detection of small objects. We integrate dense connection into YOLO-Tiny, increasing its convolutional layers and improving the feature extraction network. Improved network extracts feature maps and fuses the feature maps by using the Dense Block module. Detection network completes the classification and location at different scales with different anchor boxes. We tested improved network on the Pascal VOC dataset. The experimental results show that our network has improved accuracy by 15% compared with the original algorithm. Although the detection speed has increased, it can still meet the requirements of real-time detection. Compared with the YOLO-Tiny model, our model size only increases by 9.8. MB, compared to the YOLO model, the model size is about 1/5 of the original.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Correction Method of Local Feature Descriptor Mismatch A Conceptual Framework for the Trusted Environment of E-commerce Transaction A Study of Smart System of Power Utilization Safety Management Based on A Cloud Platform Research and Application of Automatic Control of Ammonia Injection in Power Plant Based on Artificial Intelligence Periodic Test Procedure Improvements in Digital-Control Nuclear Power Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1