表面曲率对高水平速度下水流体力学的影响

A. Iafrati
{"title":"表面曲率对高水平速度下水流体力学的影响","authors":"A. Iafrati","doi":"10.1115/OMAE2018-78438","DOIUrl":null,"url":null,"abstract":"The role played by the curvature of the body surface on the hydrodynamics of water entry with high horizontal velocity component is investigated experimentally. The study is a part of a research activity finalized at the understanding of the aircraft ditching problem. In order to avoid scaling effects which may prevent the development of ventilation/cavitation phenomena, the study is carried out at full scale velocity. Measurements are presented in terms of pressures and loads whereas some underwater visualizations are used for the interpretation of the data. Both a convex and concave body surface are considered and comparisons with the flat plate data are established.\n In the case of a concave shape, a quite complicated flow with large air entrainment develops beneath the plate. The air entrainment causes a general reduction of the pressure peak at the middle, whereas the pressure peaks recorded at the side probes are about in line with those found for the flat plate in the same conditions. The total hydrodynamic load acting normal to the plate grows more regularly but the maximum load is essentially the same as that measured in the flat plate case. For the convex shape, the pressure probes located in the middle of the plate get wetted well before the ones at the side and the pressure peaks at the sides are much lower than those in the middle. The reduced pressures at the sides cause a reduction of the total loading in the normal direction compared to flat and concave plates.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Surface Curvature on the Hydrodynamics of Water Entry at High Horizontal Velocity\",\"authors\":\"A. Iafrati\",\"doi\":\"10.1115/OMAE2018-78438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role played by the curvature of the body surface on the hydrodynamics of water entry with high horizontal velocity component is investigated experimentally. The study is a part of a research activity finalized at the understanding of the aircraft ditching problem. In order to avoid scaling effects which may prevent the development of ventilation/cavitation phenomena, the study is carried out at full scale velocity. Measurements are presented in terms of pressures and loads whereas some underwater visualizations are used for the interpretation of the data. Both a convex and concave body surface are considered and comparisons with the flat plate data are established.\\n In the case of a concave shape, a quite complicated flow with large air entrainment develops beneath the plate. The air entrainment causes a general reduction of the pressure peak at the middle, whereas the pressure peaks recorded at the side probes are about in line with those found for the flat plate in the same conditions. The total hydrodynamic load acting normal to the plate grows more regularly but the maximum load is essentially the same as that measured in the flat plate case. For the convex shape, the pressure probes located in the middle of the plate get wetted well before the ones at the side and the pressure peaks at the sides are much lower than those in the middle. The reduced pressures at the sides cause a reduction of the total loading in the normal direction compared to flat and concave plates.\",\"PeriodicalId\":106551,\"journal\":{\"name\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-78438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实验研究了高水平速度分量入水时,体表曲率对水动力的影响。本研究是在了解飞机迫降问题的基础上完成的一项研究活动的一部分。为了避免可能阻碍通风/空化现象发展的结垢效应,研究在全尺寸速度下进行。测量以压力和载荷的形式呈现,而一些水下可视化用于解释数据。考虑了凹凸曲面,并与平板数据进行了比较。在凹形的情况下,在板下形成了一个相当复杂的气流,夹带了大量的空气。空气夹带导致中间压力峰值的普遍降低,而在侧面探头记录的压力峰值与在相同条件下在平板上发现的压力峰值大致一致。作用于平板的总水动力载荷的增长更有规律,但最大载荷基本上与平板情况下的测量结果相同。对于凸形板,位于板中部的压力探头比位于板侧的压力探头更容易受潮,且位于板侧的压力峰值远低于位于板侧的压力峰值。与平板和凹板相比,侧面压力的减少导致在法向总载荷的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Surface Curvature on the Hydrodynamics of Water Entry at High Horizontal Velocity
The role played by the curvature of the body surface on the hydrodynamics of water entry with high horizontal velocity component is investigated experimentally. The study is a part of a research activity finalized at the understanding of the aircraft ditching problem. In order to avoid scaling effects which may prevent the development of ventilation/cavitation phenomena, the study is carried out at full scale velocity. Measurements are presented in terms of pressures and loads whereas some underwater visualizations are used for the interpretation of the data. Both a convex and concave body surface are considered and comparisons with the flat plate data are established. In the case of a concave shape, a quite complicated flow with large air entrainment develops beneath the plate. The air entrainment causes a general reduction of the pressure peak at the middle, whereas the pressure peaks recorded at the side probes are about in line with those found for the flat plate in the same conditions. The total hydrodynamic load acting normal to the plate grows more regularly but the maximum load is essentially the same as that measured in the flat plate case. For the convex shape, the pressure probes located in the middle of the plate get wetted well before the ones at the side and the pressure peaks at the sides are much lower than those in the middle. The reduced pressures at the sides cause a reduction of the total loading in the normal direction compared to flat and concave plates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study of Water Cutoff Performance of Steel Pipe Sheet Piles With Interlocked Joint Field Study on the Effects of Impact Frequency on the Axial and Lateral Capacity of Driven Pipe Piles in Sand Scale Model Investigations on Vibro Pile Driving Anchor Sharing in Sands: Centrifuge Modelling and Soil Element Testing to Characterise Multi-Directional Loadings A 2D Experimental and Numerical Study of Moonpools With Recess
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1