微处理器电源管理最新趋势中的验证挑战

Nagabhushan Reddy, S. Menon, Prashant D. Joshi
{"title":"微处理器电源管理最新趋势中的验证挑战","authors":"Nagabhushan Reddy, S. Menon, Prashant D. Joshi","doi":"10.1109/DFT50435.2020.9250842","DOIUrl":null,"url":null,"abstract":"Modern PC power management has evolved to provide Always On, Always Connected, and Instant Resume kind of experiences to the user, along with longer battery life. It enhances productivity and greatly improves the user experience and brings in a Mobile-like experience to the PC user. The connectivity to the system is maintained even during the standby, which keeps the data up-to-date and readily available, when the user resumes the system from standby. This modern behavior needs to be supported at both the Operating System and at the SoC level. On Windows, this is supported through the ‘Modern Standby’ feature followed by the ‘Active Idle’ feature supported by the SoC.Legacy Standby (S3) validation involved mostly checking the power, software and hardware status and the corresponding wake capabilities. Validating Modern Standby involves a lot of new methodologies and techniques such as Sleep Residency during standby, seamless transition between various Power Management states (avoiding system crashes and hangs), Instant Resume time and seamless connectivity during Modern Standby.This paper discusses the new validation methodologies established to accelerate the failure detection during these complex and error-prone use cases, and defines effective debug methodologies, thus enabling early fixing of these issues. The new validation methodologies include residency measurement techniques, verifying system stability during state transitions and measuring resume time from standby.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Validation Challenges in Recent Trends of Power Management in Microprocessors\",\"authors\":\"Nagabhushan Reddy, S. Menon, Prashant D. Joshi\",\"doi\":\"10.1109/DFT50435.2020.9250842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern PC power management has evolved to provide Always On, Always Connected, and Instant Resume kind of experiences to the user, along with longer battery life. It enhances productivity and greatly improves the user experience and brings in a Mobile-like experience to the PC user. The connectivity to the system is maintained even during the standby, which keeps the data up-to-date and readily available, when the user resumes the system from standby. This modern behavior needs to be supported at both the Operating System and at the SoC level. On Windows, this is supported through the ‘Modern Standby’ feature followed by the ‘Active Idle’ feature supported by the SoC.Legacy Standby (S3) validation involved mostly checking the power, software and hardware status and the corresponding wake capabilities. Validating Modern Standby involves a lot of new methodologies and techniques such as Sleep Residency during standby, seamless transition between various Power Management states (avoiding system crashes and hangs), Instant Resume time and seamless connectivity during Modern Standby.This paper discusses the new validation methodologies established to accelerate the failure detection during these complex and error-prone use cases, and defines effective debug methodologies, thus enabling early fixing of these issues. The new validation methodologies include residency measurement techniques, verifying system stability during state transitions and measuring resume time from standby.\",\"PeriodicalId\":340119,\"journal\":{\"name\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT50435.2020.9250842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代PC电源管理已经发展到为用户提供永远在线、永远连接和即时恢复的体验,以及更长的电池寿命。它提高了生产力,极大地改善了用户体验,为PC用户带来了类似移动设备的体验。即使在待机期间也保持与系统的连接,当用户从待机状态恢复系统时,这将使数据保持最新且随时可用。这种现代行为需要在操作系统和SoC级别上得到支持。在Windows上,这是通过“现代待机”功能,然后是SoC支持的“活动空闲”功能来支持的。遗留待机(S3)验证主要涉及检查电源、软件和硬件状态以及相应的尾流能力。验证现代待机涉及许多新的方法和技术,如待机期间的睡眠驻留,各种电源管理状态之间的无缝转换(避免系统崩溃和挂起),即时恢复时间和现代待机期间的无缝连接。本文讨论了在这些复杂和容易出错的用例中建立的加速故障检测的新验证方法,并定义了有效的调试方法,从而能够早期修复这些问题。新的验证方法包括驻留测量技术,在状态转换期间验证系统稳定性和测量待机恢复时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validation Challenges in Recent Trends of Power Management in Microprocessors
Modern PC power management has evolved to provide Always On, Always Connected, and Instant Resume kind of experiences to the user, along with longer battery life. It enhances productivity and greatly improves the user experience and brings in a Mobile-like experience to the PC user. The connectivity to the system is maintained even during the standby, which keeps the data up-to-date and readily available, when the user resumes the system from standby. This modern behavior needs to be supported at both the Operating System and at the SoC level. On Windows, this is supported through the ‘Modern Standby’ feature followed by the ‘Active Idle’ feature supported by the SoC.Legacy Standby (S3) validation involved mostly checking the power, software and hardware status and the corresponding wake capabilities. Validating Modern Standby involves a lot of new methodologies and techniques such as Sleep Residency during standby, seamless transition between various Power Management states (avoiding system crashes and hangs), Instant Resume time and seamless connectivity during Modern Standby.This paper discusses the new validation methodologies established to accelerate the failure detection during these complex and error-prone use cases, and defines effective debug methodologies, thus enabling early fixing of these issues. The new validation methodologies include residency measurement techniques, verifying system stability during state transitions and measuring resume time from standby.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variation-Aware Test for Logic Interconnects using Neural Networks – A Case Study A Pipelined Multi-Level Fault Injector for Deep Neural Networks Reliable Classification with Ensemble Convolutional Neural Networks Hardware Accelerator Design with Supervised Machine Learning for Solar Particle Event Prediction Latest Trends in Hardware Security and Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1