非lipschitz非线性不确定系统在执行器持续失效情况下的自适应FTC无切换多模型方法

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2022-09-01 DOI:10.1016/j.ifacsc.2022.100201
Arghya Chakravarty , Chitralekha Mahanta , Wei Wang , Indrani Kar
{"title":"非lipschitz非线性不确定系统在执行器持续失效情况下的自适应FTC无切换多模型方法","authors":"Arghya Chakravarty ,&nbsp;Chitralekha Mahanta ,&nbsp;Wei Wang ,&nbsp;Indrani Kar","doi":"10.1016/j.ifacsc.2022.100201","DOIUrl":null,"url":null,"abstract":"<div><p><span>A novel actuator failure<span> compensation scheme is proposed for affine nonlinear uncertain systems (not necessarily Lipschitz) subject to persistent/intermittent actuator faults/failures unknown in time, magnitude and pattern. The proposed control methodology satisfies the </span></span><em>nonlinear separation principle</em><span><span> through a modular backstepping control. The controller is then augmented with multiple estimation models to estimate failure induced parametric uncertainties and unknown system parameters. The output transient performance at start up and post-failure instances, is improved on account of a two layer adaptation which enhances the convergence speed and accuracy of parameter estimates. The proposed </span>fault tolerant control<span><span> (FTC) method yields a faithful accommodation of uncertain finite as well as infinite/intermittent/persistent actuator failures while ensuring satisfactory output transient and steady state performances. Further, compared to existing multiple model based adaptive fault tolerant control design for nonlinear systems, the proposed methodology circumvents the issues of stability due to switching between different models and utilizes a minimum number of estimation models for parameter estimation without compromising on the output performance. Consequently, the computational burden is also reduced. Compared to multiple model </span>adaptive control based FTC strategies proposed earlier which assume finite actuator failures and Lipschitz nonlinear system, the proposed method is applicable to both Lipschitz and non-Lipschitz nonlinear systems affected by intermittent actuator failures. Using the concepts from stability analysis in random nonlinear impulsive systems, the </span></span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> bounds on tracking error for all future time are derived in the case of intermittent/persistent actuator failures obtained using the proposed fault-tolerant controller. The improvement of output transient performance in the proposed control scheme in comparison with controller with single identifier, is theoretically proved and quantified.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"21 ","pages":"Article 100201"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A switching-free multiple-model approach for adaptive FTC of non-Lipschitz nonlinear uncertain systems under persistent actuator failures\",\"authors\":\"Arghya Chakravarty ,&nbsp;Chitralekha Mahanta ,&nbsp;Wei Wang ,&nbsp;Indrani Kar\",\"doi\":\"10.1016/j.ifacsc.2022.100201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A novel actuator failure<span> compensation scheme is proposed for affine nonlinear uncertain systems (not necessarily Lipschitz) subject to persistent/intermittent actuator faults/failures unknown in time, magnitude and pattern. The proposed control methodology satisfies the </span></span><em>nonlinear separation principle</em><span><span> through a modular backstepping control. The controller is then augmented with multiple estimation models to estimate failure induced parametric uncertainties and unknown system parameters. The output transient performance at start up and post-failure instances, is improved on account of a two layer adaptation which enhances the convergence speed and accuracy of parameter estimates. The proposed </span>fault tolerant control<span><span> (FTC) method yields a faithful accommodation of uncertain finite as well as infinite/intermittent/persistent actuator failures while ensuring satisfactory output transient and steady state performances. Further, compared to existing multiple model based adaptive fault tolerant control design for nonlinear systems, the proposed methodology circumvents the issues of stability due to switching between different models and utilizes a minimum number of estimation models for parameter estimation without compromising on the output performance. Consequently, the computational burden is also reduced. Compared to multiple model </span>adaptive control based FTC strategies proposed earlier which assume finite actuator failures and Lipschitz nonlinear system, the proposed method is applicable to both Lipschitz and non-Lipschitz nonlinear systems affected by intermittent actuator failures. Using the concepts from stability analysis in random nonlinear impulsive systems, the </span></span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> bounds on tracking error for all future time are derived in the case of intermittent/persistent actuator failures obtained using the proposed fault-tolerant controller. The improvement of output transient performance in the proposed control scheme in comparison with controller with single identifier, is theoretically proved and quantified.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"21 \",\"pages\":\"Article 100201\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601822000104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601822000104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对时间、幅度和模式未知的仿射非线性不确定系统(不一定是Lipschitz),提出了一种新的执行器故障补偿方案。该控制方法通过模块化反步控制来满足非线性分离原理。然后用多个估计模型扩充控制器以估计故障引起的参数不确定性和未知系统参数。由于采用了两层自适应,提高了参数估计的收敛速度和精度,提高了系统在启动和故障后的输出暂态性能。所提出的容错控制(FTC)方法在保证令人满意的输出瞬态和稳态性能的同时,忠实地适应了不确定的有限和无限/间歇/持续执行器故障。此外,与现有的基于多模型的非线性系统自适应容错控制设计相比,所提出的方法避免了由于不同模型之间切换而导致的稳定性问题,并且在不影响输出性能的情况下使用最少数量的估计模型进行参数估计。因此,也减少了计算负担。与先前提出的基于多模型自适应控制的FTC策略(假设执行器有限故障和Lipschitz非线性系统)相比,该方法既适用于Lipschitz非线性系统,也适用于受执行器间歇性故障影响的非Lipschitz非线性系统。利用随机非线性脉冲系统稳定性分析的概念,推导了采用所提出的容错控制器得到的执行器间歇性/持续性故障情况下,所有未来时间跟踪误差的L∞和L2界。与单辨识器控制器相比,所提控制方案对输出暂态性能的改善得到了理论证明和量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A switching-free multiple-model approach for adaptive FTC of non-Lipschitz nonlinear uncertain systems under persistent actuator failures

A novel actuator failure compensation scheme is proposed for affine nonlinear uncertain systems (not necessarily Lipschitz) subject to persistent/intermittent actuator faults/failures unknown in time, magnitude and pattern. The proposed control methodology satisfies the nonlinear separation principle through a modular backstepping control. The controller is then augmented with multiple estimation models to estimate failure induced parametric uncertainties and unknown system parameters. The output transient performance at start up and post-failure instances, is improved on account of a two layer adaptation which enhances the convergence speed and accuracy of parameter estimates. The proposed fault tolerant control (FTC) method yields a faithful accommodation of uncertain finite as well as infinite/intermittent/persistent actuator failures while ensuring satisfactory output transient and steady state performances. Further, compared to existing multiple model based adaptive fault tolerant control design for nonlinear systems, the proposed methodology circumvents the issues of stability due to switching between different models and utilizes a minimum number of estimation models for parameter estimation without compromising on the output performance. Consequently, the computational burden is also reduced. Compared to multiple model adaptive control based FTC strategies proposed earlier which assume finite actuator failures and Lipschitz nonlinear system, the proposed method is applicable to both Lipschitz and non-Lipschitz nonlinear systems affected by intermittent actuator failures. Using the concepts from stability analysis in random nonlinear impulsive systems, the L and L2 bounds on tracking error for all future time are derived in the case of intermittent/persistent actuator failures obtained using the proposed fault-tolerant controller. The improvement of output transient performance in the proposed control scheme in comparison with controller with single identifier, is theoretically proved and quantified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
On the turnpike to design of deep neural networks: Explicit depth bounds Finite-time event-triggered tracking control for quadcopter attitude systems with zero compensation technology Efficiency criteria and dual techniques for some nonconvex multiple cost minimization models Analysis of Hyers–Ulam stability and controllability of non-linear switched impulsive systems with delays on time scales Design of fixed-time sliding mode control using variable exponents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1