M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi
{"title":"走向社交网络时代的发现","authors":"M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi","doi":"10.1109/ICDEW.2010.5452713","DOIUrl":null,"url":null,"abstract":"In the last decades, much research has been devoted in topics related to Social Network Analysis. One important direction in this area is to analyze the temporal evolution of a network. So far, previous approaches analyzed this setting at both the global and the local level. In this paper, we focus on finding a way to detect temporal eras in an evolving network. We pose the basis for a general framework that aims at helping the analyst in browsing the temporal clusters both in a top-down and bottom-up way, exploring the network at any level of temporal details. We show the effectiveness of our approach on real data, by applying our proposed methodology to a co-authorship network extracted from a bibliographic dataset. Our first results are encouraging, and open the way for the definition and implementation of a general framework for discovering eras in evolving social networks.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards discovery of eras in social networks\",\"authors\":\"M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi\",\"doi\":\"10.1109/ICDEW.2010.5452713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decades, much research has been devoted in topics related to Social Network Analysis. One important direction in this area is to analyze the temporal evolution of a network. So far, previous approaches analyzed this setting at both the global and the local level. In this paper, we focus on finding a way to detect temporal eras in an evolving network. We pose the basis for a general framework that aims at helping the analyst in browsing the temporal clusters both in a top-down and bottom-up way, exploring the network at any level of temporal details. We show the effectiveness of our approach on real data, by applying our proposed methodology to a co-authorship network extracted from a bibliographic dataset. Our first results are encouraging, and open the way for the definition and implementation of a general framework for discovering eras in evolving social networks.\",\"PeriodicalId\":442345,\"journal\":{\"name\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2010.5452713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the last decades, much research has been devoted in topics related to Social Network Analysis. One important direction in this area is to analyze the temporal evolution of a network. So far, previous approaches analyzed this setting at both the global and the local level. In this paper, we focus on finding a way to detect temporal eras in an evolving network. We pose the basis for a general framework that aims at helping the analyst in browsing the temporal clusters both in a top-down and bottom-up way, exploring the network at any level of temporal details. We show the effectiveness of our approach on real data, by applying our proposed methodology to a co-authorship network extracted from a bibliographic dataset. Our first results are encouraging, and open the way for the definition and implementation of a general framework for discovering eras in evolving social networks.