大尺寸扇出多芯片模块封装中下填料的应力和可靠性挑战

W. Teng, J. Lee, Hsin-Ming Tseng, Liang-Yih Hung, Don Son Jiang, Yu-Po Wang
{"title":"大尺寸扇出多芯片模块封装中下填料的应力和可靠性挑战","authors":"W. Teng, J. Lee, Hsin-Ming Tseng, Liang-Yih Hung, Don Son Jiang, Yu-Po Wang","doi":"10.23919/ICEP55381.2022.9795431","DOIUrl":null,"url":null,"abstract":"This study explored the impact of additives on the application of underfill in large-size fan-out multichip module packages. The experimental results of a high-temperature storage test demonstrated that the selected underfill developed cracks. Optical microscope examination of a cross section of the cracks revealed an oxidation layer. Through addition of an anti-oxidation agent to the underfill, both forming of the oxidation layer and cracking in the underfill resulting from thermal oxidation were prevented. By contrast, when an underfill without an added flexibilizer was used in the large-size fan-out multichip module package and subjected to a temperature cycling test, cracks were observed in the chip corners, which had formed because of excessive stress in the package. When both the antioxidant and flexibilizer were added to the underfill, the generation of thermal oxidation–induced and stress-induced cracks in the package was prevented.","PeriodicalId":413776,"journal":{"name":"2022 International Conference on Electronics Packaging (ICEP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stress and Reliability Challenges of Underfills in Large-Size Fan-Out Multichip Module Packages\",\"authors\":\"W. Teng, J. Lee, Hsin-Ming Tseng, Liang-Yih Hung, Don Son Jiang, Yu-Po Wang\",\"doi\":\"10.23919/ICEP55381.2022.9795431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explored the impact of additives on the application of underfill in large-size fan-out multichip module packages. The experimental results of a high-temperature storage test demonstrated that the selected underfill developed cracks. Optical microscope examination of a cross section of the cracks revealed an oxidation layer. Through addition of an anti-oxidation agent to the underfill, both forming of the oxidation layer and cracking in the underfill resulting from thermal oxidation were prevented. By contrast, when an underfill without an added flexibilizer was used in the large-size fan-out multichip module package and subjected to a temperature cycling test, cracks were observed in the chip corners, which had formed because of excessive stress in the package. When both the antioxidant and flexibilizer were added to the underfill, the generation of thermal oxidation–induced and stress-induced cracks in the package was prevented.\",\"PeriodicalId\":413776,\"journal\":{\"name\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICEP55381.2022.9795431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP55381.2022.9795431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究探讨了添加剂对下填料在大尺寸扇出式多芯片模块封装中应用的影响。高温储层试验结果表明,所选下填体出现裂缝。光学显微镜检查了裂纹的横截面,发现了氧化层。通过在底填料中添加抗氧化剂,既防止了氧化层的形成,又防止了底填料因热氧化而产生的开裂。相比之下,当在大尺寸扇形多芯片模块封装中使用不添加柔韧剂的底填料并进行温度循环测试时,可以观察到由于封装内应力过大而形成的芯片角裂纹。当抗氧剂和柔韧剂同时加入下填料时,可以防止包体产生热氧化和应力诱导的裂纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress and Reliability Challenges of Underfills in Large-Size Fan-Out Multichip Module Packages
This study explored the impact of additives on the application of underfill in large-size fan-out multichip module packages. The experimental results of a high-temperature storage test demonstrated that the selected underfill developed cracks. Optical microscope examination of a cross section of the cracks revealed an oxidation layer. Through addition of an anti-oxidation agent to the underfill, both forming of the oxidation layer and cracking in the underfill resulting from thermal oxidation were prevented. By contrast, when an underfill without an added flexibilizer was used in the large-size fan-out multichip module package and subjected to a temperature cycling test, cracks were observed in the chip corners, which had formed because of excessive stress in the package. When both the antioxidant and flexibilizer were added to the underfill, the generation of thermal oxidation–induced and stress-induced cracks in the package was prevented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain-Induced Change in the Photonic Properties of Dumbbell-Shaped Graphene Nanoribbon Structures Terminal Reaction Behaviors in Micro Bumps: Comparison of Ti and Cr Adhesion Layers Low temperature interconnects in 1st level packaging and its challenges Advanced Low Dk and High-Density Photo- Imageable Dielectrics for RDL Interposer Low-Temperature Chemical Vapor Deposition of SiCN for Hybrid Bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1