{"title":"光伏/电池到电网应用零纹波接口的系统设计方法和验证","authors":"S. Biswas, N. Mohan, W. Robbins","doi":"10.1109/APEC.2016.7468133","DOIUrl":null,"url":null,"abstract":"A systematic method of designing a zero-ripple Ćuk converter for PV/Battery-to-grid applications is presented in this paper. The integrated magnetic core design uses an intuitive flux-reluctance model to arrive at the Area Product for this kind of structure. Unlike the earlier designs for this converter, it provides a completely analytical approach to design this converter for a range of specifications. The target application is grid interface of PV or battery. The validity of the proposed method is confirmed using finite element analyses (both 2-D and 3-D), circuit simulations in pspice as well as preliminary experimental validation.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A systematic design method and verification for a zero-ripple interface for PV/Battery-to-grid applications\",\"authors\":\"S. Biswas, N. Mohan, W. Robbins\",\"doi\":\"10.1109/APEC.2016.7468133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic method of designing a zero-ripple Ćuk converter for PV/Battery-to-grid applications is presented in this paper. The integrated magnetic core design uses an intuitive flux-reluctance model to arrive at the Area Product for this kind of structure. Unlike the earlier designs for this converter, it provides a completely analytical approach to design this converter for a range of specifications. The target application is grid interface of PV or battery. The validity of the proposed method is confirmed using finite element analyses (both 2-D and 3-D), circuit simulations in pspice as well as preliminary experimental validation.\",\"PeriodicalId\":143091,\"journal\":{\"name\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2016.7468133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A systematic design method and verification for a zero-ripple interface for PV/Battery-to-grid applications
A systematic method of designing a zero-ripple Ćuk converter for PV/Battery-to-grid applications is presented in this paper. The integrated magnetic core design uses an intuitive flux-reluctance model to arrive at the Area Product for this kind of structure. Unlike the earlier designs for this converter, it provides a completely analytical approach to design this converter for a range of specifications. The target application is grid interface of PV or battery. The validity of the proposed method is confirmed using finite element analyses (both 2-D and 3-D), circuit simulations in pspice as well as preliminary experimental validation.