{"title":"钙钛矿太阳能电池商业化的新材料和新工艺(会议报告)","authors":"H. Jung","doi":"10.1117/12.2529907","DOIUrl":null,"url":null,"abstract":"All solid-state solar cells based on organometal trihalide perovskite absorbers have already achieved distinguished power conversion efficiency (PCE) to over 23% and further improvements are expected up to 25%. These novel organometal halide perovskite absorbers which possess exceptionally strong and broad light absorption enable to approach the performances of the best thin film technologies. To commercialize these great solar cells, there are many bottlenecks such as long-term stability, large scale fabrication process, and environmental issues. \nIn this presentation, we introduce our recent efforts to improve long term stability and solve environmental issues, which will facilitate commercialization of Perovskite photovoltaic system. For examples, we introduce a recycling technology of perovskite solar cells, which will facilitate the commercialization as well as solve the environmental issues of perovskite solar cells. Also, we are going to show new interfacial layers and highly crystalline SnO2 nanoparticle layers for electron transport layer. Also, we will show a large scale coating methodology for enabling large size module fabrication by using a new solvent extractor, anisole. Also, stability issue of perovskite materials regarding charge generation and extraction will be discussed.","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel materials and process toward commercialization of perovskite solar cells (Conference Presentation)\",\"authors\":\"H. Jung\",\"doi\":\"10.1117/12.2529907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All solid-state solar cells based on organometal trihalide perovskite absorbers have already achieved distinguished power conversion efficiency (PCE) to over 23% and further improvements are expected up to 25%. These novel organometal halide perovskite absorbers which possess exceptionally strong and broad light absorption enable to approach the performances of the best thin film technologies. To commercialize these great solar cells, there are many bottlenecks such as long-term stability, large scale fabrication process, and environmental issues. \\nIn this presentation, we introduce our recent efforts to improve long term stability and solve environmental issues, which will facilitate commercialization of Perovskite photovoltaic system. For examples, we introduce a recycling technology of perovskite solar cells, which will facilitate the commercialization as well as solve the environmental issues of perovskite solar cells. Also, we are going to show new interfacial layers and highly crystalline SnO2 nanoparticle layers for electron transport layer. Also, we will show a large scale coating methodology for enabling large size module fabrication by using a new solvent extractor, anisole. Also, stability issue of perovskite materials regarding charge generation and extraction will be discussed.\",\"PeriodicalId\":342552,\"journal\":{\"name\":\"Organic, Hybrid, and Perovskite Photovoltaics XX\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic, Hybrid, and Perovskite Photovoltaics XX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2529907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2529907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel materials and process toward commercialization of perovskite solar cells (Conference Presentation)
All solid-state solar cells based on organometal trihalide perovskite absorbers have already achieved distinguished power conversion efficiency (PCE) to over 23% and further improvements are expected up to 25%. These novel organometal halide perovskite absorbers which possess exceptionally strong and broad light absorption enable to approach the performances of the best thin film technologies. To commercialize these great solar cells, there are many bottlenecks such as long-term stability, large scale fabrication process, and environmental issues.
In this presentation, we introduce our recent efforts to improve long term stability and solve environmental issues, which will facilitate commercialization of Perovskite photovoltaic system. For examples, we introduce a recycling technology of perovskite solar cells, which will facilitate the commercialization as well as solve the environmental issues of perovskite solar cells. Also, we are going to show new interfacial layers and highly crystalline SnO2 nanoparticle layers for electron transport layer. Also, we will show a large scale coating methodology for enabling large size module fabrication by using a new solvent extractor, anisole. Also, stability issue of perovskite materials regarding charge generation and extraction will be discussed.