{"title":"基于直流总线信令的固态变压器接口PMSG风能转换系统自主电源管理策略","authors":"Rui Gao, I. Husain, A. Huang","doi":"10.1109/APEC.2016.7468353","DOIUrl":null,"url":null,"abstract":"The solid-state transformer (SST) enabled DC/AC Microgrid provides an effective solution for distributed renewable energy resources (DRER) integration with conventional utility grid. This paper investigates a DC network system consisting of wind turbines, SST, and DC loads. Without any energy storage devices, an autonomous power management strategy based on improved DC bus signaling (DBS) is proposed to achieve system stable operation and power balance under various scenarios, specifically system grid-connected mode, islanding mode, and the mode transition. The extreme conditions were emphasized and analyzed as a testament to verify the feasibility of proposed control. DC bus voltage level and its gradient information have been employed as the only indication for distinguishing different modes and control implementation. System power management competence has been simulated and verified with MATLAB/Simulink.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An autonomous power management strategy based on DC bus signaling for solid-state transformer interfaced PMSG wind energy conversion system\",\"authors\":\"Rui Gao, I. Husain, A. Huang\",\"doi\":\"10.1109/APEC.2016.7468353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solid-state transformer (SST) enabled DC/AC Microgrid provides an effective solution for distributed renewable energy resources (DRER) integration with conventional utility grid. This paper investigates a DC network system consisting of wind turbines, SST, and DC loads. Without any energy storage devices, an autonomous power management strategy based on improved DC bus signaling (DBS) is proposed to achieve system stable operation and power balance under various scenarios, specifically system grid-connected mode, islanding mode, and the mode transition. The extreme conditions were emphasized and analyzed as a testament to verify the feasibility of proposed control. DC bus voltage level and its gradient information have been employed as the only indication for distinguishing different modes and control implementation. System power management competence has been simulated and verified with MATLAB/Simulink.\",\"PeriodicalId\":143091,\"journal\":{\"name\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2016.7468353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An autonomous power management strategy based on DC bus signaling for solid-state transformer interfaced PMSG wind energy conversion system
The solid-state transformer (SST) enabled DC/AC Microgrid provides an effective solution for distributed renewable energy resources (DRER) integration with conventional utility grid. This paper investigates a DC network system consisting of wind turbines, SST, and DC loads. Without any energy storage devices, an autonomous power management strategy based on improved DC bus signaling (DBS) is proposed to achieve system stable operation and power balance under various scenarios, specifically system grid-connected mode, islanding mode, and the mode transition. The extreme conditions were emphasized and analyzed as a testament to verify the feasibility of proposed control. DC bus voltage level and its gradient information have been employed as the only indication for distinguishing different modes and control implementation. System power management competence has been simulated and verified with MATLAB/Simulink.