弯曲差分线的单位胞EBG结构差分共模转换噪声抑制

Sangyeol Oh, B. Shin, Jaehyuk Lim, Seungjin Lee, Jaehoon Lee
{"title":"弯曲差分线的单位胞EBG结构差分共模转换噪声抑制","authors":"Sangyeol Oh, B. Shin, Jaehyuk Lim, Seungjin Lee, Jaehoon Lee","doi":"10.1109/EDAPS.2016.7893137","DOIUrl":null,"url":null,"abstract":"In order to reduce differential-to-common mode conversion noise in bended differential lines, we propose a unit cell electromagnetic bandgap (EBG) structure. The proposed structure compensates for mismatches of inductances and capacitances between inner and outer lines of the bended differential lines. Its performances of the common-mode noise suppression in frequency and time domains were verified by 3D full wave simulator, HFSS. Also, in order to verify the simulated results, the bended differential lines with the proposed unit cell EBG structure was fabricated and measured. As a result, suppression level of the differential-to-common mode conversion noise is below −20 dB from DC to 6 GHz, and Time-Domain-Through (TDT) common-mode noise voltage is reduced as compared with that of conventional bended differential lines.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"726 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Differential-to-common mode conversion noise suppression with unit cell EBG structure for bended differential lines\",\"authors\":\"Sangyeol Oh, B. Shin, Jaehyuk Lim, Seungjin Lee, Jaehoon Lee\",\"doi\":\"10.1109/EDAPS.2016.7893137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce differential-to-common mode conversion noise in bended differential lines, we propose a unit cell electromagnetic bandgap (EBG) structure. The proposed structure compensates for mismatches of inductances and capacitances between inner and outer lines of the bended differential lines. Its performances of the common-mode noise suppression in frequency and time domains were verified by 3D full wave simulator, HFSS. Also, in order to verify the simulated results, the bended differential lines with the proposed unit cell EBG structure was fabricated and measured. As a result, suppression level of the differential-to-common mode conversion noise is below −20 dB from DC to 6 GHz, and Time-Domain-Through (TDT) common-mode noise voltage is reduced as compared with that of conventional bended differential lines.\",\"PeriodicalId\":191549,\"journal\":{\"name\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"726 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS.2016.7893137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了降低弯曲差分线的差共模转换噪声,提出了一种单元格电磁带隙(EBG)结构。所提出的结构补偿了弯曲差分线内外线之间电感和电容的不匹配。通过三维全波模拟器HFSS验证了该方法在频域和时域的共模噪声抑制性能。此外,为了验证模拟结果,制作并测量了具有所提出的单元格EBG结构的弯曲差分线。结果表明,从直流到6 GHz,差分到共模转换噪声的抑制水平低于- 20 dB,并且与传统弯曲差分线相比,时域通(TDT)共模噪声电压降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential-to-common mode conversion noise suppression with unit cell EBG structure for bended differential lines
In order to reduce differential-to-common mode conversion noise in bended differential lines, we propose a unit cell electromagnetic bandgap (EBG) structure. The proposed structure compensates for mismatches of inductances and capacitances between inner and outer lines of the bended differential lines. Its performances of the common-mode noise suppression in frequency and time domains were verified by 3D full wave simulator, HFSS. Also, in order to verify the simulated results, the bended differential lines with the proposed unit cell EBG structure was fabricated and measured. As a result, suppression level of the differential-to-common mode conversion noise is below −20 dB from DC to 6 GHz, and Time-Domain-Through (TDT) common-mode noise voltage is reduced as compared with that of conventional bended differential lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced macromodels of high-speed low-power differential drivers Broadband material model identification with GMS-parameters Modeling of power distribution networks for path finding 36-GHz-bandwidth quad-channel driver module using compact QFN package for optical coherent systems Evaluation of near-singular integrals for quadrilateral basis in integral equation solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1