利用周期纳米结构改善P3HT:PCBM体异质结有机太阳能电池的光电流密度

F. Hakim, M. K. Alam
{"title":"利用周期纳米结构改善P3HT:PCBM体异质结有机太阳能电池的光电流密度","authors":"F. Hakim, M. K. Alam","doi":"10.1109/ECACE.2017.7912900","DOIUrl":null,"url":null,"abstract":"In this paper, we utilize periodic nanostructures to enhance the short circuit current density of bulk heterojunction organic solar cell. We exploit the technique of broadening the absorption spectrum efficiently using periodic nanostructures in photoactive layer to improve the short circuit current density of our solar cell. In this regard, we simulate a conventional 200 nm thick P3HT:PCBM solar cell with four different nanostructures (pillar, rectangle, pyramid, sphere) placed in the active medium and calculate the absorbed power and generation rate initially. Then, we calculate the short circuit current density with different nanostructures incorporated into it. We find that maximum short circuit current density (21.70 mA/cm2) can be achieved when pillars are incorporated and 20.21% improvement is observed at optimized condition. Finally, we extend our study by replacing P3HT:PCBM with PBDTTT-C:PCBM active layer. In the latter case, a shortened enhancement of 9.37% is observed.","PeriodicalId":333370,"journal":{"name":"2017 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of photo-current density of P3HT:PCBM bulk heterojunction organic solar cell using periodic nanostructures\",\"authors\":\"F. Hakim, M. K. Alam\",\"doi\":\"10.1109/ECACE.2017.7912900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we utilize periodic nanostructures to enhance the short circuit current density of bulk heterojunction organic solar cell. We exploit the technique of broadening the absorption spectrum efficiently using periodic nanostructures in photoactive layer to improve the short circuit current density of our solar cell. In this regard, we simulate a conventional 200 nm thick P3HT:PCBM solar cell with four different nanostructures (pillar, rectangle, pyramid, sphere) placed in the active medium and calculate the absorbed power and generation rate initially. Then, we calculate the short circuit current density with different nanostructures incorporated into it. We find that maximum short circuit current density (21.70 mA/cm2) can be achieved when pillars are incorporated and 20.21% improvement is observed at optimized condition. Finally, we extend our study by replacing P3HT:PCBM with PBDTTT-C:PCBM active layer. In the latter case, a shortened enhancement of 9.37% is observed.\",\"PeriodicalId\":333370,\"journal\":{\"name\":\"2017 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECACE.2017.7912900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECACE.2017.7912900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用周期性纳米结构来提高体异质结有机太阳能电池的短路电流密度。我们利用光活性层中的周期性纳米结构有效地拓宽吸收光谱的技术来提高我们的太阳能电池的短路电流密度。为此,我们模拟了一个传统的200nm厚的P3HT:PCBM太阳能电池,在活性介质中放置了四种不同的纳米结构(柱状、矩形、金字塔状、球形),并初步计算了吸收功率和发电速率。然后,我们计算了不同纳米结构的短路电流密度。结果表明,在优化条件下,采用柱状结构可实现最大短路电流密度(21.70 mA/cm2),提高了20.21%。最后,我们扩展了我们的研究,用PBDTTT-C:PCBM取代P3HT:PCBM。在后一种情况下,观察到9.37%的缩短增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of photo-current density of P3HT:PCBM bulk heterojunction organic solar cell using periodic nanostructures
In this paper, we utilize periodic nanostructures to enhance the short circuit current density of bulk heterojunction organic solar cell. We exploit the technique of broadening the absorption spectrum efficiently using periodic nanostructures in photoactive layer to improve the short circuit current density of our solar cell. In this regard, we simulate a conventional 200 nm thick P3HT:PCBM solar cell with four different nanostructures (pillar, rectangle, pyramid, sphere) placed in the active medium and calculate the absorbed power and generation rate initially. Then, we calculate the short circuit current density with different nanostructures incorporated into it. We find that maximum short circuit current density (21.70 mA/cm2) can be achieved when pillars are incorporated and 20.21% improvement is observed at optimized condition. Finally, we extend our study by replacing P3HT:PCBM with PBDTTT-C:PCBM active layer. In the latter case, a shortened enhancement of 9.37% is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new approach of noise elimination methodology for ECG signal Modeling of grid connected battery storage wave energy and PV hybrid renewable power generation Automated anti-collision system for automobiles A TDMA based EM controlled multi-channel MAC protocol for underwater sensor networks Performance analysis of classifying localization sites of protein using data mining techniques and artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1