{"title":"基于原位和PVT传感器融合的减小设计余量的puf密钥生成","authors":"Sachin Taneja, M. Alioto","doi":"10.1109/ESSCIRC.2019.8902733","DOIUrl":null,"url":null,"abstract":"This work introduces a Physically Unclonable Function (PUF) based key generation scheme with run-time in-situ instability detection and process/voltage/temperature (PVT) sensors. Such sensors are fused to evaluate the sufficient number of correction bits NECC required by Error Correcting Code (ECC) to make the PUF output stable, and meet a given key error rate target. Run-time sensing overcomes the substantial ECC energy penalty associated with the traditional design-time margin of NECC for worst-case word, die, voltage and temperature. ECC with tunable NECC is introduced to enable energy saving in typical cases where NECC is lower than its worst-case value. Sensor fusion via simple linear regression estimates the required NECC at run-time.A testchip in 40 nm demonstrates the concept, based on a static monostable current mirror PUF with NECC = 0…4. Average energy reduction by 1.8X is shown compared to a traditional margined design, at an area overhead of less than 20%. As additional benefit of adjustable NECC, such energy savings can be further expanded under applications having less stringent stability requirements.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PUF-based Key Generation with Design Margin Reduction via In-Situ and PVT Sensor Fusion\",\"authors\":\"Sachin Taneja, M. Alioto\",\"doi\":\"10.1109/ESSCIRC.2019.8902733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a Physically Unclonable Function (PUF) based key generation scheme with run-time in-situ instability detection and process/voltage/temperature (PVT) sensors. Such sensors are fused to evaluate the sufficient number of correction bits NECC required by Error Correcting Code (ECC) to make the PUF output stable, and meet a given key error rate target. Run-time sensing overcomes the substantial ECC energy penalty associated with the traditional design-time margin of NECC for worst-case word, die, voltage and temperature. ECC with tunable NECC is introduced to enable energy saving in typical cases where NECC is lower than its worst-case value. Sensor fusion via simple linear regression estimates the required NECC at run-time.A testchip in 40 nm demonstrates the concept, based on a static monostable current mirror PUF with NECC = 0…4. Average energy reduction by 1.8X is shown compared to a traditional margined design, at an area overhead of less than 20%. As additional benefit of adjustable NECC, such energy savings can be further expanded under applications having less stringent stability requirements.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PUF-based Key Generation with Design Margin Reduction via In-Situ and PVT Sensor Fusion
This work introduces a Physically Unclonable Function (PUF) based key generation scheme with run-time in-situ instability detection and process/voltage/temperature (PVT) sensors. Such sensors are fused to evaluate the sufficient number of correction bits NECC required by Error Correcting Code (ECC) to make the PUF output stable, and meet a given key error rate target. Run-time sensing overcomes the substantial ECC energy penalty associated with the traditional design-time margin of NECC for worst-case word, die, voltage and temperature. ECC with tunable NECC is introduced to enable energy saving in typical cases where NECC is lower than its worst-case value. Sensor fusion via simple linear regression estimates the required NECC at run-time.A testchip in 40 nm demonstrates the concept, based on a static monostable current mirror PUF with NECC = 0…4. Average energy reduction by 1.8X is shown compared to a traditional margined design, at an area overhead of less than 20%. As additional benefit of adjustable NECC, such energy savings can be further expanded under applications having less stringent stability requirements.