{"title":"基于塞贝克效应的薄膜材料热导率测定的cmos兼容表面微加工测试结构","authors":"Z. Wang, P. Fiorini, C. van Hoof","doi":"10.1109/MEMSYS.2009.4805459","DOIUrl":null,"url":null,"abstract":"This paper reports the design, modeling, fabrication and measurement of a CMOS-compatible surface-micromachined test structure for the determination of the thermal conductivity of thin films based on the Seebeck effect. The Seebeck effect-based temperature sensing is more advantageous for thin film materials with a relatively large Seebeck coefficient, such as lightly doped poly-Si and poly-SiGe. In this paper, the conceptual design is first analyzed and then verified with finite element modeling. The test structure is fabricated with poly-Si70% Ge30%. Its functionality is demonstrated from experimental results. The sources of the measurement error are discussed and the solutions to minimize the measurement error are proposed.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CMOS-Compatible Surface-Micromachined Test Structure for Determination of Thermal Conductivity of Thin Film Materials based on Seebeck Effect\",\"authors\":\"Z. Wang, P. Fiorini, C. van Hoof\",\"doi\":\"10.1109/MEMSYS.2009.4805459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the design, modeling, fabrication and measurement of a CMOS-compatible surface-micromachined test structure for the determination of the thermal conductivity of thin films based on the Seebeck effect. The Seebeck effect-based temperature sensing is more advantageous for thin film materials with a relatively large Seebeck coefficient, such as lightly doped poly-Si and poly-SiGe. In this paper, the conceptual design is first analyzed and then verified with finite element modeling. The test structure is fabricated with poly-Si70% Ge30%. Its functionality is demonstrated from experimental results. The sources of the measurement error are discussed and the solutions to minimize the measurement error are proposed.\",\"PeriodicalId\":187850,\"journal\":{\"name\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2009.4805459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CMOS-Compatible Surface-Micromachined Test Structure for Determination of Thermal Conductivity of Thin Film Materials based on Seebeck Effect
This paper reports the design, modeling, fabrication and measurement of a CMOS-compatible surface-micromachined test structure for the determination of the thermal conductivity of thin films based on the Seebeck effect. The Seebeck effect-based temperature sensing is more advantageous for thin film materials with a relatively large Seebeck coefficient, such as lightly doped poly-Si and poly-SiGe. In this paper, the conceptual design is first analyzed and then verified with finite element modeling. The test structure is fabricated with poly-Si70% Ge30%. Its functionality is demonstrated from experimental results. The sources of the measurement error are discussed and the solutions to minimize the measurement error are proposed.