大规模反问题的高效并行流算法

H. Sundar
{"title":"大规模反问题的高效并行流算法","authors":"H. Sundar","doi":"10.1109/HPEC.2017.8091033","DOIUrl":null,"url":null,"abstract":"Large-scale inverse problems and uncertainty quantification (UQ), i.e., quantifying uncertainties in complex mathematical models and their large-scale computational implementations, is one of the outstanding challenges in computational science and will be a driver for the acquisition of future supercomputers. These methods generate significant amounts of simulation data that is used by other parts of the computation in a complex fashion, requiring either large inmemory storage and/or redundant computations. We present a streaming algorithm for such computation that achieves high performance without requiring additional in-memory storage or additional computations. By reducing the memory footprint of the application we are able to achieve a significant speedup (∼3×) by operating in a more favorable region of the strong scaling curve.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient parallel streaming algorithms for large-scale inverse problems\",\"authors\":\"H. Sundar\",\"doi\":\"10.1109/HPEC.2017.8091033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale inverse problems and uncertainty quantification (UQ), i.e., quantifying uncertainties in complex mathematical models and their large-scale computational implementations, is one of the outstanding challenges in computational science and will be a driver for the acquisition of future supercomputers. These methods generate significant amounts of simulation data that is used by other parts of the computation in a complex fashion, requiring either large inmemory storage and/or redundant computations. We present a streaming algorithm for such computation that achieves high performance without requiring additional in-memory storage or additional computations. By reducing the memory footprint of the application we are able to achieve a significant speedup (∼3×) by operating in a more favorable region of the strong scaling curve.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模逆问题和不确定性量化(UQ),即量化复杂数学模型及其大规模计算实现中的不确定性,是计算科学中的突出挑战之一,将成为未来超级计算机获取的驱动因素。这些方法产生大量的模拟数据,这些数据以复杂的方式被其他计算部分使用,需要大量的内存存储和/或冗余计算。我们提出了一种用于此类计算的流算法,该算法无需额外的内存存储或额外的计算即可实现高性能。通过减少应用程序的内存占用,我们能够通过在强缩放曲线的更有利区域中操作来实现显着的加速(~ 3倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient parallel streaming algorithms for large-scale inverse problems
Large-scale inverse problems and uncertainty quantification (UQ), i.e., quantifying uncertainties in complex mathematical models and their large-scale computational implementations, is one of the outstanding challenges in computational science and will be a driver for the acquisition of future supercomputers. These methods generate significant amounts of simulation data that is used by other parts of the computation in a complex fashion, requiring either large inmemory storage and/or redundant computations. We present a streaming algorithm for such computation that achieves high performance without requiring additional in-memory storage or additional computations. By reducing the memory footprint of the application we are able to achieve a significant speedup (∼3×) by operating in a more favorable region of the strong scaling curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1