Fares Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, S. Mir
{"title":"用于微机械麦克风的高度柔性膜系统。建模和仿真","authors":"Fares Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, S. Mir","doi":"10.1109/ICSCS.2009.5412255","DOIUrl":null,"url":null,"abstract":"This paper presents a mechanical modeling of membrane systems applicable to micromachined microphones requiring a low stiffness constant. We have recently developed a single-chip electrodynamic microphone in a CMOS MEMS technology. The microphone consists of a suspended square membrane of 1.4mm side, 3µm thick and 10µg, and two concentric inductors. This suspended moving membrane is fixed to the substrate with 4 attachments arms. In order to achieve a desired flat frequency response characteristic, covering the entire acoustic band, several attachment designs are presented, studied and compared. These designs include crab-leg, meander, U-spring and serpentine forms. We have found that for comparable dimensions, the U-spring form presents the highest compliance and the meander type is the stiffest.","PeriodicalId":126072,"journal":{"name":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Highly flexible membrane systems for micromachined microphones - modeling and simulation\",\"authors\":\"Fares Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, S. Mir\",\"doi\":\"10.1109/ICSCS.2009.5412255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a mechanical modeling of membrane systems applicable to micromachined microphones requiring a low stiffness constant. We have recently developed a single-chip electrodynamic microphone in a CMOS MEMS technology. The microphone consists of a suspended square membrane of 1.4mm side, 3µm thick and 10µg, and two concentric inductors. This suspended moving membrane is fixed to the substrate with 4 attachments arms. In order to achieve a desired flat frequency response characteristic, covering the entire acoustic band, several attachment designs are presented, studied and compared. These designs include crab-leg, meander, U-spring and serpentine forms. We have found that for comparable dimensions, the U-spring form presents the highest compliance and the meander type is the stiffest.\",\"PeriodicalId\":126072,\"journal\":{\"name\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCS.2009.5412255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCS.2009.5412255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly flexible membrane systems for micromachined microphones - modeling and simulation
This paper presents a mechanical modeling of membrane systems applicable to micromachined microphones requiring a low stiffness constant. We have recently developed a single-chip electrodynamic microphone in a CMOS MEMS technology. The microphone consists of a suspended square membrane of 1.4mm side, 3µm thick and 10µg, and two concentric inductors. This suspended moving membrane is fixed to the substrate with 4 attachments arms. In order to achieve a desired flat frequency response characteristic, covering the entire acoustic band, several attachment designs are presented, studied and compared. These designs include crab-leg, meander, U-spring and serpentine forms. We have found that for comparable dimensions, the U-spring form presents the highest compliance and the meander type is the stiffest.