Taufique Z. Redhwan, Arif Ul Alam, Y. Haddara, M. Howlader
{"title":"液晶聚合物与铜直接键合的键合机理及电化学阻抗","authors":"Taufique Z. Redhwan, Arif Ul Alam, Y. Haddara, M. Howlader","doi":"10.23919/LTB-3D.2017.7947436","DOIUrl":null,"url":null,"abstract":"We report direct bonding of liquid crystal polymer and copper film for electrochemical sensing for the first time. A peel strength of 683 g/cm was observed indicating strong adhesion. X-ray photoelectron and electrochemical impedance spectroscopies were used to characterize the sensing electrodes.","PeriodicalId":183993,"journal":{"name":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bonding mechanism and electrochemical impedance of directly bonded liquid crystal polymer and copper\",\"authors\":\"Taufique Z. Redhwan, Arif Ul Alam, Y. Haddara, M. Howlader\",\"doi\":\"10.23919/LTB-3D.2017.7947436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report direct bonding of liquid crystal polymer and copper film for electrochemical sensing for the first time. A peel strength of 683 g/cm was observed indicating strong adhesion. X-ray photoelectron and electrochemical impedance spectroscopies were used to characterize the sensing electrodes.\",\"PeriodicalId\":183993,\"journal\":{\"name\":\"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/LTB-3D.2017.7947436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/LTB-3D.2017.7947436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bonding mechanism and electrochemical impedance of directly bonded liquid crystal polymer and copper
We report direct bonding of liquid crystal polymer and copper film for electrochemical sensing for the first time. A peel strength of 683 g/cm was observed indicating strong adhesion. X-ray photoelectron and electrochemical impedance spectroscopies were used to characterize the sensing electrodes.