Hongbae S. Park, R. Hoskinson, H. Abdollahi, B. Stoeber
{"title":"紧凑的近眼显示系统,使用基于超透镜的微透镜阵列放大镜","authors":"Hongbae S. Park, R. Hoskinson, H. Abdollahi, B. Stoeber","doi":"10.1364/OE.23.030618","DOIUrl":null,"url":null,"abstract":"This paper reports a new approach to making a very compact near-eye display (NED) using only two layers of microlens arrays (MLA) working in conjunction as a magnifying lens (MLA magnifier). The purpose of the MLA magnifier is to generate a virtual image of a display, positioned within several centimeters from the eye, at optical infinity to minimize the optical disparity between the surrounding scenery and the image on the display. Our MLA magnifier is about 2 mm thick with a system focal length of 5 mm and a total thickness of around 7 mm (excluding the thickness of the display) in non-folded optics configuration, which is much more compact in comparison to other popular NEDs such as Google Glass or Recon Instrument's Snow goggles having folded optics.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Compact near-eye display system using a superlens-based microlens array magnifier\",\"authors\":\"Hongbae S. Park, R. Hoskinson, H. Abdollahi, B. Stoeber\",\"doi\":\"10.1364/OE.23.030618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a new approach to making a very compact near-eye display (NED) using only two layers of microlens arrays (MLA) working in conjunction as a magnifying lens (MLA magnifier). The purpose of the MLA magnifier is to generate a virtual image of a display, positioned within several centimeters from the eye, at optical infinity to minimize the optical disparity between the surrounding scenery and the image on the display. Our MLA magnifier is about 2 mm thick with a system focal length of 5 mm and a total thickness of around 7 mm (excluding the thickness of the display) in non-folded optics configuration, which is much more compact in comparison to other popular NEDs such as Google Glass or Recon Instrument's Snow goggles having folded optics.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.23.030618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OE.23.030618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact near-eye display system using a superlens-based microlens array magnifier
This paper reports a new approach to making a very compact near-eye display (NED) using only two layers of microlens arrays (MLA) working in conjunction as a magnifying lens (MLA magnifier). The purpose of the MLA magnifier is to generate a virtual image of a display, positioned within several centimeters from the eye, at optical infinity to minimize the optical disparity between the surrounding scenery and the image on the display. Our MLA magnifier is about 2 mm thick with a system focal length of 5 mm and a total thickness of around 7 mm (excluding the thickness of the display) in non-folded optics configuration, which is much more compact in comparison to other popular NEDs such as Google Glass or Recon Instrument's Snow goggles having folded optics.