{"title":"一个40nm-CMOS, 18 μW,温度和电源电压无关的RFID标签传感器接口","authors":"Valentijn De Smedt, G. Gielen, W. Dehaene","doi":"10.1109/ASSCC.2013.6690995","DOIUrl":null,"url":null,"abstract":"A fully-integrated, oscillator-based sensor interface for RFIDs and low-power applications is presented in this article. The circuit is processed and tested in a 40 nm CMOS technology. The interface translates the analog sensor signal, coming from a differential sensor, into a Pulse width Modulated (PWM) signal of which the duty cycle is proportional to the sensor value. Due to the high control linearity of the used oscillator, the interface has a low nonlinearity and can be made highly temperature and supply voltage independent. The total power consumption is 18 μW at 1.0 V and the interface works over a 0.8 to 1.5 V supply voltage range and a -20 to 100°C temperature range. The voltage dependency is below 1.42 %/V and the maximum temperature dependency is 79 ppm/°C. The oscillator frequency is slightly above 2 MHz in all circumstances. The measured SNDR of 47.4 dB results in a FOM of 66 fJ/b-conv.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A 40nm-CMOS, 18 μW, temperature and supply voltage independent sensor interface for RFID tags\",\"authors\":\"Valentijn De Smedt, G. Gielen, W. Dehaene\",\"doi\":\"10.1109/ASSCC.2013.6690995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fully-integrated, oscillator-based sensor interface for RFIDs and low-power applications is presented in this article. The circuit is processed and tested in a 40 nm CMOS technology. The interface translates the analog sensor signal, coming from a differential sensor, into a Pulse width Modulated (PWM) signal of which the duty cycle is proportional to the sensor value. Due to the high control linearity of the used oscillator, the interface has a low nonlinearity and can be made highly temperature and supply voltage independent. The total power consumption is 18 μW at 1.0 V and the interface works over a 0.8 to 1.5 V supply voltage range and a -20 to 100°C temperature range. The voltage dependency is below 1.42 %/V and the maximum temperature dependency is 79 ppm/°C. The oscillator frequency is slightly above 2 MHz in all circumstances. The measured SNDR of 47.4 dB results in a FOM of 66 fJ/b-conv.\",\"PeriodicalId\":296544,\"journal\":{\"name\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2013.6690995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6690995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 40nm-CMOS, 18 μW, temperature and supply voltage independent sensor interface for RFID tags
A fully-integrated, oscillator-based sensor interface for RFIDs and low-power applications is presented in this article. The circuit is processed and tested in a 40 nm CMOS technology. The interface translates the analog sensor signal, coming from a differential sensor, into a Pulse width Modulated (PWM) signal of which the duty cycle is proportional to the sensor value. Due to the high control linearity of the used oscillator, the interface has a low nonlinearity and can be made highly temperature and supply voltage independent. The total power consumption is 18 μW at 1.0 V and the interface works over a 0.8 to 1.5 V supply voltage range and a -20 to 100°C temperature range. The voltage dependency is below 1.42 %/V and the maximum temperature dependency is 79 ppm/°C. The oscillator frequency is slightly above 2 MHz in all circumstances. The measured SNDR of 47.4 dB results in a FOM of 66 fJ/b-conv.