基于搜索焦点网络的香菇语义分割方法

Juan Du, Songxuan Liu
{"title":"基于搜索焦点网络的香菇语义分割方法","authors":"Juan Du, Songxuan Liu","doi":"10.1109/ICARA56516.2023.10125799","DOIUrl":null,"url":null,"abstract":"The substantially similar texture features of sticks and shiitake mushrooms in the mushroom-growing environment make precisely labeled samples more expensive and semantic segmentation of shiitake mushrooms more challenging. In this paper, a search focus network(SFNet) for semantic segmentation of shiitake mushrooms was proposed, which utilized the group-reversal attention module(GRAM) to strengthen semantic information understanding and trained via transfer learning and data augmentation strategies. The experimental results on the self-built shiitake mushroom sticks dataset revealed that structural measure $S_{\\alpha}$, weighted F-measure $F_{\\beta}^{\\omega}$, adaptive E-measure $E_{\\phi}^{ad}$, and absolute mean error $M$ of SFNet were 0.9161, 0.9113, 0.9808, and 0.0049, respectively, with practical and steady performance. With only a few training samples, the proposed approach can accomplish the semantic segmentation task of shiitake mushrooms.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shiitake Mushroom Semantic Segmentation Method Based on Search Focus Network\",\"authors\":\"Juan Du, Songxuan Liu\",\"doi\":\"10.1109/ICARA56516.2023.10125799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The substantially similar texture features of sticks and shiitake mushrooms in the mushroom-growing environment make precisely labeled samples more expensive and semantic segmentation of shiitake mushrooms more challenging. In this paper, a search focus network(SFNet) for semantic segmentation of shiitake mushrooms was proposed, which utilized the group-reversal attention module(GRAM) to strengthen semantic information understanding and trained via transfer learning and data augmentation strategies. The experimental results on the self-built shiitake mushroom sticks dataset revealed that structural measure $S_{\\\\alpha}$, weighted F-measure $F_{\\\\beta}^{\\\\omega}$, adaptive E-measure $E_{\\\\phi}^{ad}$, and absolute mean error $M$ of SFNet were 0.9161, 0.9113, 0.9808, and 0.0049, respectively, with practical and steady performance. With only a few training samples, the proposed approach can accomplish the semantic segmentation task of shiitake mushrooms.\",\"PeriodicalId\":443572,\"journal\":{\"name\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA56516.2023.10125799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在蘑菇生长环境中,木棒和香菇的纹理特征基本相似,这使得精确标记样品的成本更高,也使香菇的语义分割更具挑战性。本文提出了一种用于香菇语义分割的搜索焦点网络(SFNet),该网络利用群体反转注意模块(GRAM)加强语义信息理解,并通过迁移学习和数据增强策略进行训练。在自建香菇条数据集上的实验结果表明,SFNet的结构测度$S_{\alpha}$、加权f测度$F_{\beta}^{\omega}$、自适应e测度$E_{\phi}^{ad}$和绝对平均误差$M$分别为0.9161、0.9113、0.9808和0.0049,具有实用稳定的性能。该方法只需要少量的训练样本,就可以完成香菇的语义分割任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shiitake Mushroom Semantic Segmentation Method Based on Search Focus Network
The substantially similar texture features of sticks and shiitake mushrooms in the mushroom-growing environment make precisely labeled samples more expensive and semantic segmentation of shiitake mushrooms more challenging. In this paper, a search focus network(SFNet) for semantic segmentation of shiitake mushrooms was proposed, which utilized the group-reversal attention module(GRAM) to strengthen semantic information understanding and trained via transfer learning and data augmentation strategies. The experimental results on the self-built shiitake mushroom sticks dataset revealed that structural measure $S_{\alpha}$, weighted F-measure $F_{\beta}^{\omega}$, adaptive E-measure $E_{\phi}^{ad}$, and absolute mean error $M$ of SFNet were 0.9161, 0.9113, 0.9808, and 0.0049, respectively, with practical and steady performance. With only a few training samples, the proposed approach can accomplish the semantic segmentation task of shiitake mushrooms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions Toward Computationally Efficient Path Generation and Push Planning for Robotic Nonprehensile Manipulation Correlation Analysis of Factors Influencing the Motion Planning Accuracy of Articulated Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1