Mohamed A. Mokhtar, P. Vogelmann, Michael Haas, M. Ortmanns
{"title":"94.3 db SFDR, 91.5 db DR, 200-kS/s CT增量Delta-Sigma调制器,差分复位FIR反馈","authors":"Mohamed A. Mokhtar, P. Vogelmann, Michael Haas, M. Ortmanns","doi":"10.1109/ESSCIRC.2019.8902923","DOIUrl":null,"url":null,"abstract":"This letter presents a high-resolution continuous-time incremental delta–sigma modulator, which employs an finite impulse response (FIR) filter in its feedback. Due to the resetting environment of the incremental operation, the FIR digital-to-analog converter comes with added challenges to design. Thus, a differential resetting scheme between adjacent FIR taps is introduced, which allows the use of a sufficiently large number of taps in the incremental operation, leading to an improved clock jitter robustness, relaxed linearity, and dynamic requirements of the first stage opamp. A prototype is fabricated in a 180-nm CMOS process, occupying an active area of 0.175 mm2. The prototype achieves a peak SNR/SNDR of 86/83 dB, a dynamic range (DR) of 91.5 dB, and a peak spurious-free DR of 94.3 dB at a conversion rate of 200 kS/s. The power consumption is 1.27 mW from a 3-V power supply. This results in a Schreier FoM of 170.4 dB.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 94.3-dB SFDR, 91.5-dB DR, and 200-kS/s CT Incremental Delta–Sigma Modulator With Differentially Reset FIR Feedback\",\"authors\":\"Mohamed A. Mokhtar, P. Vogelmann, Michael Haas, M. Ortmanns\",\"doi\":\"10.1109/ESSCIRC.2019.8902923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a high-resolution continuous-time incremental delta–sigma modulator, which employs an finite impulse response (FIR) filter in its feedback. Due to the resetting environment of the incremental operation, the FIR digital-to-analog converter comes with added challenges to design. Thus, a differential resetting scheme between adjacent FIR taps is introduced, which allows the use of a sufficiently large number of taps in the incremental operation, leading to an improved clock jitter robustness, relaxed linearity, and dynamic requirements of the first stage opamp. A prototype is fabricated in a 180-nm CMOS process, occupying an active area of 0.175 mm2. The prototype achieves a peak SNR/SNDR of 86/83 dB, a dynamic range (DR) of 91.5 dB, and a peak spurious-free DR of 94.3 dB at a conversion rate of 200 kS/s. The power consumption is 1.27 mW from a 3-V power supply. This results in a Schreier FoM of 170.4 dB.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 94.3-dB SFDR, 91.5-dB DR, and 200-kS/s CT Incremental Delta–Sigma Modulator With Differentially Reset FIR Feedback
This letter presents a high-resolution continuous-time incremental delta–sigma modulator, which employs an finite impulse response (FIR) filter in its feedback. Due to the resetting environment of the incremental operation, the FIR digital-to-analog converter comes with added challenges to design. Thus, a differential resetting scheme between adjacent FIR taps is introduced, which allows the use of a sufficiently large number of taps in the incremental operation, leading to an improved clock jitter robustness, relaxed linearity, and dynamic requirements of the first stage opamp. A prototype is fabricated in a 180-nm CMOS process, occupying an active area of 0.175 mm2. The prototype achieves a peak SNR/SNDR of 86/83 dB, a dynamic range (DR) of 91.5 dB, and a peak spurious-free DR of 94.3 dB at a conversion rate of 200 kS/s. The power consumption is 1.27 mW from a 3-V power supply. This results in a Schreier FoM of 170.4 dB.