GMR光栅纳米缝隙检测方法

Zihuan Xia, Yonggang Wu, Leijie Ling, G. Lv, Heyun Wu
{"title":"GMR光栅纳米缝隙检测方法","authors":"Zihuan Xia, Yonggang Wu, Leijie Ling, G. Lv, Heyun Wu","doi":"10.1117/12.887554","DOIUrl":null,"url":null,"abstract":"In this paper the displacement of the reflection resonant peak resulting from the change of the gap between the guided-mode resonance (GMR) grating and substrate is used to measure the nanometer gap. The paper calculates double layer model and metal substrate model using rigorous coupled-wave analysis (RCWA). It is revealed that nano-gap detection using GMR grating is feasible for both dielectric and metal substrate. The detection range of resonant wavelength and gap is tunable. The detect sensitivity is investigated by varying the parameters of grating (thickness, period and refractive index), the thickness of films, and polarization. Tolerance of grating implies an advantage for manufacture. An optimized result presents an 18nm resonant shift for 100nm gap with the max sensitivity achieving 0.85.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanometer gap detection method using GMR grating\",\"authors\":\"Zihuan Xia, Yonggang Wu, Leijie Ling, G. Lv, Heyun Wu\",\"doi\":\"10.1117/12.887554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the displacement of the reflection resonant peak resulting from the change of the gap between the guided-mode resonance (GMR) grating and substrate is used to measure the nanometer gap. The paper calculates double layer model and metal substrate model using rigorous coupled-wave analysis (RCWA). It is revealed that nano-gap detection using GMR grating is feasible for both dielectric and metal substrate. The detection range of resonant wavelength and gap is tunable. The detect sensitivity is investigated by varying the parameters of grating (thickness, period and refractive index), the thickness of films, and polarization. Tolerance of grating implies an advantage for manufacture. An optimized result presents an 18nm resonant shift for 100nm gap with the max sensitivity achieving 0.85.\",\"PeriodicalId\":316559,\"journal\":{\"name\":\"International Conference on Thin Film Physics and Applications\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.887554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.887554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用导模谐振光栅与衬底之间的间隙变化引起的反射谐振峰位移来测量纳米间隙。本文采用严格耦合波分析(RCWA)计算了双层模型和金属基板模型。结果表明,利用GMR光栅对介质和金属衬底进行纳米间隙检测是可行的。谐振波长和间隙的探测范围是可调的。通过改变光栅的厚度、周期和折射率等参数、薄膜厚度和偏振度来研究探测灵敏度。光栅的公差意味着制造的优势。优化后的结果显示,在100nm的间隙内,共振位移为18nm,最大灵敏度达到0.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanometer gap detection method using GMR grating
In this paper the displacement of the reflection resonant peak resulting from the change of the gap between the guided-mode resonance (GMR) grating and substrate is used to measure the nanometer gap. The paper calculates double layer model and metal substrate model using rigorous coupled-wave analysis (RCWA). It is revealed that nano-gap detection using GMR grating is feasible for both dielectric and metal substrate. The detection range of resonant wavelength and gap is tunable. The detect sensitivity is investigated by varying the parameters of grating (thickness, period and refractive index), the thickness of films, and polarization. Tolerance of grating implies an advantage for manufacture. An optimized result presents an 18nm resonant shift for 100nm gap with the max sensitivity achieving 0.85.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studies on a novel structure of ZnO/AlN/ diamond for SAW device applications Effect of UV and vacuum treatment on stability of WO3 gas sensing films High-sensitivity testing techniques for laser optics Effect of deposition rate on the DUV/VUV reflectance of MgF2protected aluminum mirrors with e-beam evaporation Temperature dependence of photoluminescence, Raman scattering, and transmittance spectra of anatase Ti1-xFexO2 nanocrystalline films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1