{"title":"基于逆动力学计算的起重机反馈控制","authors":"N. Yanai, Motoji Yamamoto, A. Mohri","doi":"10.1109/IROS.2001.973403","DOIUrl":null,"url":null,"abstract":"Proposes a control method for a crane using inverse dynamics calculation of the system. The load of a crane is generally easy to swing and thus the work using the crane is dangerous. For preventing the unfavorable swing of the load, it is desirable to feedback the actual position of the load in a control method. As such a control law, state-feedback control based on linearization of the crane system is often used. However the method reduces control performance when rope length is changed, because of nonlinearity of the system. In the paper, a feedback control method is proposed where the inverse dynamics calculation is involved to compensate non-linear dynamics of the system. In the control system, an observer is used to get higher order derivatives of the position of load, which is needed for the inverse dynamics calculation. By using the control method, control performance is unchangeable for changing rope length. Numerical simulation and experiment are shown to verify the effectiveness of the proposed control method.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Feed-back control of crane based on inverse dynamics calculation\",\"authors\":\"N. Yanai, Motoji Yamamoto, A. Mohri\",\"doi\":\"10.1109/IROS.2001.973403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a control method for a crane using inverse dynamics calculation of the system. The load of a crane is generally easy to swing and thus the work using the crane is dangerous. For preventing the unfavorable swing of the load, it is desirable to feedback the actual position of the load in a control method. As such a control law, state-feedback control based on linearization of the crane system is often used. However the method reduces control performance when rope length is changed, because of nonlinearity of the system. In the paper, a feedback control method is proposed where the inverse dynamics calculation is involved to compensate non-linear dynamics of the system. In the control system, an observer is used to get higher order derivatives of the position of load, which is needed for the inverse dynamics calculation. By using the control method, control performance is unchangeable for changing rope length. Numerical simulation and experiment are shown to verify the effectiveness of the proposed control method.\",\"PeriodicalId\":319679,\"journal\":{\"name\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2001.973403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.973403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feed-back control of crane based on inverse dynamics calculation
Proposes a control method for a crane using inverse dynamics calculation of the system. The load of a crane is generally easy to swing and thus the work using the crane is dangerous. For preventing the unfavorable swing of the load, it is desirable to feedback the actual position of the load in a control method. As such a control law, state-feedback control based on linearization of the crane system is often used. However the method reduces control performance when rope length is changed, because of nonlinearity of the system. In the paper, a feedback control method is proposed where the inverse dynamics calculation is involved to compensate non-linear dynamics of the system. In the control system, an observer is used to get higher order derivatives of the position of load, which is needed for the inverse dynamics calculation. By using the control method, control performance is unchangeable for changing rope length. Numerical simulation and experiment are shown to verify the effectiveness of the proposed control method.