O. Bon, J. Roig, F. Morancho, S. Haendler, O. Gonnard, C. Raynaud
{"title":"集成在65nm SOI技术中的功率mosfet的热阻降低","authors":"O. Bon, J. Roig, F. Morancho, S. Haendler, O. Gonnard, C. Raynaud","doi":"10.1109/ESSDERC.2007.4430906","DOIUrl":null,"url":null,"abstract":"The static and dynamic analysis of the thermal resistance (RTH) in 65 nm SOI DriftMOS power devices is presented in this work. Experiment and numerical simulation are both used to compare DriftMOS devices integrated in 65 nm and 130 nm SOI technologies. Important RTHmiddot drop (between 40% and 60%) is found by experiment at 65 nm technology, basically due to the thinner buried oxide (BOX) layer. However, numerical simulation reveals a lower RTHmiddot reduction in the hottest point of the SOI active layer, shifted down about 15%. Furthermore, the RTHmiddot dependence with device geometrical parameters is investigated and the different layer contributions to the global thermal resistance are identified.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal resistance reduction in power MOSFETs integrated in a 65nm SOI technology\",\"authors\":\"O. Bon, J. Roig, F. Morancho, S. Haendler, O. Gonnard, C. Raynaud\",\"doi\":\"10.1109/ESSDERC.2007.4430906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The static and dynamic analysis of the thermal resistance (RTH) in 65 nm SOI DriftMOS power devices is presented in this work. Experiment and numerical simulation are both used to compare DriftMOS devices integrated in 65 nm and 130 nm SOI technologies. Important RTHmiddot drop (between 40% and 60%) is found by experiment at 65 nm technology, basically due to the thinner buried oxide (BOX) layer. However, numerical simulation reveals a lower RTHmiddot reduction in the hottest point of the SOI active layer, shifted down about 15%. Furthermore, the RTHmiddot dependence with device geometrical parameters is investigated and the different layer contributions to the global thermal resistance are identified.\",\"PeriodicalId\":103959,\"journal\":{\"name\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSDERC 2007 - 37th European Solid State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2007.4430906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2007.4430906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文对65nm SOI DriftMOS功率器件的热阻(RTH)进行了静态和动态分析。通过实验和数值模拟,比较了采用65纳米和130纳米SOI技术集成的DriftMOS器件。在65纳米技术实验中发现重要的RTHmiddot下降(在40%到60%之间),主要是由于较薄的埋藏氧化物(BOX)层。然而,数值模拟表明,SOI活动层的最热点的RTHmiddot下降幅度较小,下降了约15%。此外,研究了RTHmiddot与器件几何参数的关系,并确定了不同层对全局热阻的贡献。
Thermal resistance reduction in power MOSFETs integrated in a 65nm SOI technology
The static and dynamic analysis of the thermal resistance (RTH) in 65 nm SOI DriftMOS power devices is presented in this work. Experiment and numerical simulation are both used to compare DriftMOS devices integrated in 65 nm and 130 nm SOI technologies. Important RTHmiddot drop (between 40% and 60%) is found by experiment at 65 nm technology, basically due to the thinner buried oxide (BOX) layer. However, numerical simulation reveals a lower RTHmiddot reduction in the hottest point of the SOI active layer, shifted down about 15%. Furthermore, the RTHmiddot dependence with device geometrical parameters is investigated and the different layer contributions to the global thermal resistance are identified.