Yang-Kyu Choi, Daewon Ha, E. Snow, J. Bokor, T. King
{"title":"CMOS finfet可靠性研究","authors":"Yang-Kyu Choi, Daewon Ha, E. Snow, J. Bokor, T. King","doi":"10.1109/IEDM.2003.1269206","DOIUrl":null,"url":null,"abstract":"Hot-carrier and oxide reliability of CMOS FinFETs with 2.1 nm-thick gate-SiO/sub 2/ were investigated. It was found that hot-carrier immunity improves as the fin width (body thickness) decreases, which facilitates gate-length scaling, while it is degraded at elevated temperature due to the self-heating effect. High values of Q/sub BD/ are achieved for devices with very small gate area. A post-fin-etch hydrogen anneal is helpful for improving hot-carrier immunity and Q/sub BD/.","PeriodicalId":344286,"journal":{"name":"IEEE International Electron Devices Meeting 2003","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Reliability study of CMOS FinFETs\",\"authors\":\"Yang-Kyu Choi, Daewon Ha, E. Snow, J. Bokor, T. King\",\"doi\":\"10.1109/IEDM.2003.1269206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hot-carrier and oxide reliability of CMOS FinFETs with 2.1 nm-thick gate-SiO/sub 2/ were investigated. It was found that hot-carrier immunity improves as the fin width (body thickness) decreases, which facilitates gate-length scaling, while it is degraded at elevated temperature due to the self-heating effect. High values of Q/sub BD/ are achieved for devices with very small gate area. A post-fin-etch hydrogen anneal is helpful for improving hot-carrier immunity and Q/sub BD/.\",\"PeriodicalId\":344286,\"journal\":{\"name\":\"IEEE International Electron Devices Meeting 2003\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Electron Devices Meeting 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2003.1269206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Electron Devices Meeting 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2003.1269206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hot-carrier and oxide reliability of CMOS FinFETs with 2.1 nm-thick gate-SiO/sub 2/ were investigated. It was found that hot-carrier immunity improves as the fin width (body thickness) decreases, which facilitates gate-length scaling, while it is degraded at elevated temperature due to the self-heating effect. High values of Q/sub BD/ are achieved for devices with very small gate area. A post-fin-etch hydrogen anneal is helpful for improving hot-carrier immunity and Q/sub BD/.