B. Casper, G. Balamurugan, J. Jaussi, J. Kennedy, M. Mansuri
{"title":"未来微处理器接口:分析、设计与优化","authors":"B. Casper, G. Balamurugan, J. Jaussi, J. Kennedy, M. Mansuri","doi":"10.1109/CICC.2007.4405777","DOIUrl":null,"url":null,"abstract":"High-aggregate bandwidth interfaces with minimized power, silicon area, cost and complexity will be essential to the viability of future microprocessor systems. Optimization of microprocessor interfaces at the system level is crucial to providing the most cost-effective and efficient solution. This paper details a comprehensive interconnect and system level analysis method that can be used to accurately evaluate platform-level tradeoffs and has been correlated to link measurements with 10% accuracy. System tradeoffs with respect to interconnect quality, equalization, modulation, clock architecture are shown. Interconnect and circuit density improvements are identified as a promising research direction to maximize the bandwidth and power efficiency of future microprocessor platforms.","PeriodicalId":130106,"journal":{"name":"2007 IEEE Custom Integrated Circuits Conference","volume":"95 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Future Microprocessor Interfaces: Analysis, Design and Optimization\",\"authors\":\"B. Casper, G. Balamurugan, J. Jaussi, J. Kennedy, M. Mansuri\",\"doi\":\"10.1109/CICC.2007.4405777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-aggregate bandwidth interfaces with minimized power, silicon area, cost and complexity will be essential to the viability of future microprocessor systems. Optimization of microprocessor interfaces at the system level is crucial to providing the most cost-effective and efficient solution. This paper details a comprehensive interconnect and system level analysis method that can be used to accurately evaluate platform-level tradeoffs and has been correlated to link measurements with 10% accuracy. System tradeoffs with respect to interconnect quality, equalization, modulation, clock architecture are shown. Interconnect and circuit density improvements are identified as a promising research direction to maximize the bandwidth and power efficiency of future microprocessor platforms.\",\"PeriodicalId\":130106,\"journal\":{\"name\":\"2007 IEEE Custom Integrated Circuits Conference\",\"volume\":\"95 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Custom Integrated Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2007.4405777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2007.4405777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Future Microprocessor Interfaces: Analysis, Design and Optimization
High-aggregate bandwidth interfaces with minimized power, silicon area, cost and complexity will be essential to the viability of future microprocessor systems. Optimization of microprocessor interfaces at the system level is crucial to providing the most cost-effective and efficient solution. This paper details a comprehensive interconnect and system level analysis method that can be used to accurately evaluate platform-level tradeoffs and has been correlated to link measurements with 10% accuracy. System tradeoffs with respect to interconnect quality, equalization, modulation, clock architecture are shown. Interconnect and circuit density improvements are identified as a promising research direction to maximize the bandwidth and power efficiency of future microprocessor platforms.